Presseinformation 075/2021

Rekordverdächtige Lithium-Metall-Zelle

Nickelreiche Kathode und ionischer Flüssigelektrolyt ermöglichen extrem hohe Energiedichte bei guter Stabilität – Forschende berichten im Magazin Joule
Mit einer vielversprechenden Kombination aus Kathode und Elektrolyt wollen die Forscherinnen und Forscher des HIU eine sehr hohe Energiedichte möglich machen. (Foto: Amadeus Bramsiepe, KIT)
Mit einer vielversprechenden Kombination aus Kathode und Elektrolyt wollen die Forscherinnen und Forscher des HIU eine sehr hohe Energiedichte möglich machen. (Foto: Amadeus Bramsiepe, KIT)

Eine extrem hohe Energiedichte von 560 Wattstunden pro Kilogramm – bezogen auf das Gesamtgewicht der Aktivmaterialien – bei bemerkenswert guter Stabilität bietet eine neuartige Lithium-Metall-Batterie. Dafür haben Forschende am vom Karlsruher Institut für Technologie (KIT) in Kooperation mit der Universität Ulm gegründeten Helmholtz-Institut Ulm (HIU) eine vielversprechende Kombination aus Kathode und Elektrolyt eingesetzt: Die nickelreiche Kathode erlaubt, viel Energie pro Masse zu speichern, der ionische Flüssigelektrolyt sorgt dafür, dass die Kapazität über viele Ladezyklen weitestgehend erhalten bleibt. Über die rekordverdächtige Lithium-Metall-Batterie berichtet das Team im Magazin Joule (DOI: 10.1016/j.joule.2021.06.014)

Derzeit stellen Lithium-Ionen-Batterien die gängigste Lösung für die mobile Stromversorgung dar. Die Technologie stößt jedoch bei manchen Anforderungen an ihre Grenzen. Dies gilt besonders für die Elektromobilität, bei der leichte, kompakte Fahrzeuge mit hohen Reichweiten gefragt sind. Als Alternative bieten sich Lithium-Metall-Batterien an: Sie zeichnen sich durch eine hohe Energiedichte aus, das heißt, sie speichern viel Energie pro Masse bzw. Volumen. Doch ihre Stabilität stellt eine Herausforderung dar – weil die Elektrodenmaterialien mit gewöhnlichen Elektrolytsystemen reagieren.
 
Eine Lösung haben nun Forschende am Karlsruher Institut für Technologie (KIT) und am Helmholtz-Institut Ulm – Elektrochemische Energiespeicherung (HIU) gefunden. Wie sie im Magazin Joule berichten, setzen sie eine vielversprechende neue Materialkombination ein. Sie verwenden eine kobaltarme, nickelreiche Schichtkathode (NCM88). Diese bietet eine hohe Energiedichte. Mit dem üblicherweise verwendeten kommerziell erhältlichen organischen Elektrolyten (LP30) lässt die Stabilität allerdings stark zu wünschen übrig. Die Speicherkapazität sinkt mit steigender Zahl der Ladezyklen. Warum das so ist, erklärt Professor Stefano Passerini, Direktor des HIU und Leiter der Forschungsgruppe Elektrochemie der Batterien: „Im Elektrolyten LP30 entstehen Partikelrisse an der Kathode. Innerhalb dieser Risse reagiert der Elektrolyt und zerstört die Struktur. Zudem bildet sich eine dicke moosartige lithiumhaltige Schicht auf der Anode.“ Die Forschenden verwendeten daher stattdessen einen schwerflüchtigen, nicht entflammbaren ionischen Flüssigelektrolyten mit zwei Anionen (ILE). „Mithilfe des ILE lassen sich die Strukturveränderungen an der nickelreichen Kathode wesentlich eindämmen“, berichtet Dr. Guk-Tae Kim von der Forschungsgruppe Elektrochemie der Batterien am HIU.

Grafik ionische Flüssigelektrolyte
Mit dem ionischen Flüssigelektrolyten ILE (rechts) lassen sich
Strukturveränderungen an der nickelreichen Kathode NCM88 weitgehend
vermeiden; die Kapazität der Batterie bleibt über 1 000 Ladezyklen zu
88 Prozent erhalten. (Abbildung: Fanglin Wu und Dr. Matthias Künzel, KIT/HIU)

Kapazität über 1 000 Ladezyklen zu 88 Prozent erhalten

Die Ergebnisse: Die Lithium-Metall-Batterie erreicht mit der Kathode NCM88 und dem Elektrolyten ILE eine Energiedichte von 560 Wattstunden pro Kilogramm (Wh/kg) ) – bezogen auf das Gesamtgewicht der Aktivmaterialien. Sie weist anfänglich eine Speicherkapazität von 214 Milliamperestunden pro Gramm (mAh/g) auf; über 1 000 Ladezyklen bleibt die Kapazität zu 88 Prozent erhalten. Die Coulomb-Effizienz, die das Verhältnis zwischen entnommener und zugeführter Kapazität angibt, beträgt durchschnittlich 99,94 Prozent. Da sich die vorgestellte Batterie auch durch eine hohe Sicherheit auszeichnet, ist den Forschenden aus Karlsruhe und Ulm damit ein wesentlicher Schritt auf dem Weg zur kohlenstoffneutralen Mobilität gelungen.

Über das Helmholtz-Institut Ulm

Das Helmholtz-Institut Ulm (HIU) wurde im Januar 2011 vom Karlsruher Institut für Technologie (KIT) als Mitglied der Helmholtz-Gemeinschaft in Kooperation mit der Universität Ulm gegründet. Mit dem Deutschen Zentrum für Luft- und Raumfahrt (DLR) sowie dem Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) sind zwei weitere renommierte Einrichtungen als assoziierte Partner in das HIU eingebunden. Das internationale Team aus rund 130 Wissenschaftlerinnen und Wissenschaftlern forscht im HIU an der Weiterentwicklung der Grundlagen von zukunftsfähigen Energiespeichern für den stationären und mobilen Einsatz.

Originalpublikation (Open Access)
Fanglin Wu, Shan Fang, Matthias Kuenzel, Angelo Mullaliu, Jae-Kwang Kim, Xinpei Gao, Thomas Diemant, Guk-Tae Kim, and Stefano Passerini: Dual-anion ionic liquid electrolyte enables stable Ni-rich cathodes in lithium-metal batteries. Joule. Cell Press, 2021. DOI: 10.1016/j.joule.2021.06.014

https://doi.org/10.1016/j.joule.2021.06.014

Mehr zum HIU: https://www.hiu-batteries.de

 

Hinweis: Dieser Text wurde am 20.08.2021 aktualisiert. Um Missverständnisse zu vermeiden, haben wir die Überschrift dieser Pressemitteilung angepasst und im Vorspann die Information „bezogen auf das Gesamtgewicht der Aktivmaterialien“ ergänzt: Die spezifische Energiedichte von 560 Wattstunden pro Kilogramm bezieht sich auf das Gesamtgewicht der Aktivmaterialien (Anode, Kathode), nicht einer möglichen industriefertigen Batterie. Das Team hat jedoch eine funktionierende Laborzelle konstruiert, auf die sich eben diese Werte beziehen.

 

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 10 000 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 22 800 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.

or, 12.08.2021
Kontakt:

 

Monika Landgraf
Chief Communication Officer
Leiterin Gesamtkommunikation
Pressesprecherin
Tel: +49 721 608-41150
Fax: +49 721 608-43658
presse does-not-exist.kit edu

Kontakt für diese Presseinformation:

Sandra Wiebe
Pressereferentin
Tel.: +49 721 608-41172
sandra wiebe does-not-exist.kit edu
Das Foto kann in der höchsten uns vorliegenden Qualität angefordert werden unter:
presse does-not-exist.kit edu oder +49 721 608-41105.