Presseinformation 188/2012

Poren mit viel Platz

KIT-Forscher entwickeln neues Verfahren zur Herstellung metallorganischer Gerüste
Struktur der metallorganischen Gerüste der Klasse SURMOF 2: Die Porengröße beträgt zurzeit schon bis zu drei mal drei Nanometer. (Abbildung: Dr. Jinxuan Liu, IFG)
Struktur der metallorganischen Gerüste der Klasse SURMOF 2: Die Porengröße beträgt zurzeit schon bis zu drei mal drei Nanometer. (Abbildung: Dr. Jinxuan Liu, IFG)

Ein neues Verfahren zur Herstellung metallorganischer Gerüste (MOFs) haben Forscher des Instituts für Funktionelle Grenzflächen (IFG) des KIT, der Jacobs University Bremen und weiterer Einrichtungen entwickelt: Mithilfe der sogenannten Flüssigphasen-Epitaxie ist es den Wissenschaftlern gelungen, eine neue Klasse von MOFs mit einer zuvor unerreichten Porengröße zu fertigen. Diese Gerüstverbindungen versprechen interessante Anwendungen in Medizin, Optik und Photonik. In der Zeitschrift „Nature Scientific Reports“ stellen die Forscher die als „SURMOF 2“ bezeichnete neue Klasse von MOFs vor.  


Metallorganische Gerüstverbindungen (MOFs – Metal Organic Frameworks) ermöglichen es, nanoskalige Objekte zu speichern und für verschiedene Anwendungen bereitzustellen. Sie finden daher immer mehr Interesse in vielen Forschungsbereichen wie Materialwissenschaften, Biologie und Medizin. MOFs sind hochgeordnete molekulare Systeme, die aus metallischen Knotenpunkten und organischen Streben bestehen. Die Poren in diesen Gerüsten sind frei zugänglich. Zur Speicherung von Wasserstoff und anderen kleinen Molekülen wie Kohlendioxid oder Methan werden MOFs als Pulver eingesetzt. Für anspruchsvollere Anwendungen, etwa zum Speichern und anschließenden Freisetzen von Antibiotika, sind jedoch mechanisch stärker belastbare MOF-Beschichtungen erforderlich.  


Am Institut für Funktionelle Grenzflächen (IFG) des KIT arbeiten Wissenschaftler um Institutsleiter Professor Christof Wöll daher an neuen Verfahren zur MOF-Herstellung: Sie lassen die MOF-Strukturen epitaktisch, das heißt schichtweise, auf der Oberfläche von Substraten wachsen (SURMOFs – Surface Mounted Metal Organic Frameworks). So lassen sich Größe und Form der Poren ebenso wie deren chemische Funktionalität für die jeweilige Anwendung maßschneidern. Eine am IFG entwickelte spezielle Methode, die sogenannte Flüssigphasen-Epitaxie (LPE – Liquid Phase Epitaxy) gestattet es, auch Gerüststrukturen herzustellen, die sich mit den normalen nasschemischen Methoden nicht erzeugen lassen. Wie die genaue theoretische Analyse der Arbeitsgruppe von Professor Thomas Heine an der Jacobs University Bremen zeigte, sind die Wechselwirkungen zwischen den organischen Streben für die Stabilität dieser großporigen Gerüste verantwortlich. In einer von der Zeitschrift Nature Scientific Reports veröffentlichten Arbeit stellen die beteiligten Forscher – IFG und Institut für Organische Chemie (IOC) des KIT, Jacobs University Bremen und weitere Einrichtungen in Mainz, Bielefeld und Thuwal/Saudi-Arabien – eine Serie von strukturell verwandten, hochsymmetrischen Typen von Gerüstverbindungen vor, die mit der LPE-Methode hergestellt wurden und besonders große Poren aufweisen.  


Zur Herstellung dieser neuartigen, als „SURMOFs 2“ bezeichneten Serie von MOFs synthetisierten die Wissenschaftler verschiedene, sehr spezielle organische Moleküle verschiedener Länge. Die Porengröße der neuen metallorganischen Gerüstverbindungen beträgt zurzeit schon bis zu drei mal drei Nanometer. Damit bieten die Poren bereits jetzt Platz für kleine Proteine. Die Forscher arbeiten intensiv daran, die Länge der organischen Streben noch weiter zu vergrößern, um noch größere Proteine und im nächsten Schritt sogar metallische Nanopartikel in die Gerüststrukturen einzubetten, was interessante Anwendungen in der Optik und Photonik ermöglicht.  


„Das Hauptpotenzial der SURMOFs 2 sehen wir zurzeit im Bereich optischer Materialien. Der nächste Schritt wird es sein, Hetero-Schichten herzustellen, in denen ganz unterschiedliche Materialen aufeinandergestapelt werden“, erklärt Professor Christof Wöll vom IFG des KIT. „Das Anwendungspotenzial metallorganischer Käfige läßt sich heute erst vage erahnen. Die MOF-Gerüste kann man sich als zusammengesetzte Bausteine vorstellen. Die Chemiker haben gelernt, wie man diese Bausteine zu einem Gerüst zusammensetzt. Jetzt gilt es, die Vielfalt der aus der Chemie bekannten Moleküle als Bausteine auszunutzen, um neue Materialien mit neuen Anwendungspotenzialen zu entwickeln, die beispielsweise die Katalyse, Sensorik oder logische Speichermaterialien revolutionieren könnten. Computersimulationen sind ideal, um die Bausteine für Käfige mit optimalen Eigenschaften zu bestimmen und diese danach im Labor zu realisieren“, erläutert Professor Thomas Heine von der Jacobs University Bremen.


Jinxuan Liu, Binit Lukose, Osama Shekhah, Hasan Kemal Arslan, Peter Weidler, Hartmut Gliemann, Stefan Bräse, Sylvain Grosjean, Adelheid Godt, Xinliang Feng, Klaus Müllen, Ioan-Bogdan Magdau, Thomas Heine, Christof Wöll: A novel series of isoreticular metal organic frameworks: realizing metastable structures by liquid phase epitaxy. In: Nature Scientific Reports 2, Article number: 921 bzw. doi: 10.1038/srep00921

www.nature.com/srep/2012/121204/srep00921/full/srep00921.html 


Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 800 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 22 300 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.

or, 05.12.2012
Kontakt:

 

Monika Landgraf
Chief Communication Officer
Leiterin Gesamtkommunikation
Pressesprecherin
Tel: +49 721 608-41150
Fax: +49 721 608-43658
presse does-not-exist.kit edu

Kontakt für diese Presseinformation:

Margarete Lehné
stellv. Pressesprecherin
Tel.: +49 721 608-41157
margarete lehne does-not-exist.kit edu