Home | english  | Leichte Sprache | Impressum | Datenschutz | Sitemap | Intranet | KIT
Portrait Monika Landgraf
Kontakt:
Monika Landgraf
Leiterin Gesamt-kommunikation, Pressesprecherin

Tel: +49 721 608-21150
Fax: +49 721 608-43658
presseEbj6∂kit edu

Abonnement der Presseinformationen

per RSS-Feed

Anleitung RSS-Feed einbinden

per E-Mail

Presseinformation 035/2015

Mechanische Tarnkappen - ohne komplizierte Mathematik

Aussparungen in Materialien einbauen, ohne die Konstruktion zu schwächen: KIT-Wissenschaftler finden neue, einfache Herangehensweise
Mechanische Tarnkappe: In einer regelmäßigen bienenwabenartigen Struktur (links) wird ein Loch durch eine bestimmte Verzerrung darum ausgeglichen (rechts). Kräfte von außen wirken mit dieser „mechanischen Tarnkappe“ so, als wäre das Loch nicht vorhanden.
Mechanische Tarnkappe: In einer regelmäßigen bienenwabenartigen Struktur wird ein Loch durch eine Verzerrung ausgeglichen. Kräfte von außen wirken dann so, als wäre das Loch nicht vorhanden. (Bild: T. Bückmann/KIT)

Eine Bienenwabe ist ein sehr stabiles Gebilde, doch mit einem größeren Loch geht die Stabilität weitgehend verloren. Wie könnte eine Bienenwabe aussehen, die trotz Loch äußeren Kräften standhält? Solche stabilen Varianten bekannter Konstruktionen zu finden, kann etwa in der Architektur oder bei der Entwicklung neuer Baustoffe nützlich sein. Bisher war der mathematische Aufwand dafür sehr hoch und führte in der Mechanik nicht zum Erfolg. Forscher des Karlsruher Instituts für Technologie (KIT) haben nun ein neues Prinzip gefunden, das den mathematischen Weg deutlich vereinfacht und vielversprechende Ergebnisse mit einfachen Mitteln liefert.

 

Der Begriff „Koordinatentransformation“ mag zunächst nicht nach einem einfachen Konzept klingen – doch solche mathematischen Umformungen können auch ganz anschaulich sein: Ein Netzwerk von verbundenen Punkten wird auf eine Gummihaut gemalt. Streckt und verzerrt man diese Gummifläche, hat man eine Koordinatentransformation nachgestellt. Wenn das gedachte Netzwerk auf eine Materialverteilung abgebildet werden kann, hat man einen recht universellen Design-Ansatz zur Hand, um etwa mechanische Kräfte, die auf das Material wirken, in gewünschte Bahnen zu lenken.

 

Für Licht ist die Grundlage solcher Umformungen die Mathematik der Transformationsoptik. Doch dieses Prinzip auf echte Materialien und Bauteile in der Mechanik zu übertragen, war bisher für reale Konstruktionen und Stoffe nicht möglich – die Mathematik lieferte gewissermaßen unmögliche Anforderungen an das Material.

 

Um die Schwierigkeiten zu umgehen, haben die Forscher am Institut für Angewandte Physik des KIT um Erstautor Tiemo Bückmann einen neuen, einfacheren Weg aufgetan. „Wir haben uns ein Netzwerk von elektrischen Widerständen vorgestellt“, erklärt Bückmann. „Dort kann man die Drahtverbindungen zwischen den Widerständen unterschiedlich lang wählen, aber ihr Wert verändert sich nicht. So bleibt die elektrische Leitfähigkeit des Netzwerks auch dann unverändert, wenn man es verformt.“

 

Dieses Gedankenexperiment haben die Forscher nun auf die Praxis übertragen. „In der Mechanik findet man das Prinzip wieder, wenn man sich kleine Federn anstelle der Widerstände vorstellt“, so Tiemo Bückmann. „Wir können einzelne Federn länger oder kürzer machen, wenn wir dafür ihre Form so anpassen werden, dass die Kräfte zwischen ihnen gleich bleiben. Dieses einfache Prinzip spart viel Rechenaufwand, und erlaubt uns das direkte Transformieren echter Materialien.“

 

Die Forscher haben ihre Methode in einem Modellversuch mit einem Material aus gedrucktem Polymer getestet. In eine stabile sechseckige, bienenwabenartige Struktur wurde ein Loch eingebracht. Die verzerrenden Kräfte führen aufgrund der reduzierten Stabilität zunächst zu einem Fehler von über 700 Prozent. Nach Anwendung der neu entwickelten Umformung betrug der Fehler nur noch 26 Prozent. Die Ergebnisse wurden gerade in der Zeitschrift Proceedings of the National Academy of Sciences (PNAS) veröffentlicht.

 

Die Anwendungsmöglichkeiten sind vielfältig, denn mit der neuen Methode können bekannte zusammengesetzte Materialien oder mechanische Stützkonstruktionen so berechnet werden, dass sie auch in besonderen Formen möglichst stabil auf äußere Kräfte reagieren – nämlich so, als ob die Stützkonstruktion unverformt wäre.

 


Analyse des Beispiels vom Loch in einer sechseckigen Struktur: Der Verformungsfehler, der durch äußere Kräfte auf die Struktur mit Loch wirkt, ist groß – die Struktur ist sehr instabil. Mit der neuen Konstruktionsmethode kann dieser Fehler stark reduziert werden: Die Kräfte werden gleichsam um das Loch herumgelenkt. (Bild: T. Bückmann/KIT)

 

 

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 300 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 25 100 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen.

mb, 07.04.2015

Weiterer Pressekontakt:

Michael Büker
PKM – Themenscout
Tel.: +49 721 608 48122
Fax: +49 721 608 43658
E-Mail: michael buekerJaj4∂kit edu
Das Foto kann in der höchsten uns vorliegenden Qualität angefordert werden unter:
presseExu1∂kit edu oder +49 721 608-47414.

Die Presseinformation steht auch als PDF-Datei zur Verfügung.