Presseinformation 078/2024

Keine signifikanten PFAS-Emissionen durch Abfallverbrennung

Versuche am KIT zeigen, dass sich Fluorpolymere in der Hausmüllverbrennung nach europäischen Standards nahezu rückstandsfrei abbauen
In der Verbrennungsanlage BRENDA am KIT testen die Forschenden, ob und in welchem Umfang PFAS über die Abfallverbrennung in die Umwelt gelangen. (Foto: KIT)
In der Verbrennungsanlage BRENDA am KIT testen die Forschenden, ob und in welchem Umfang PFAS über die Abfallverbrennung in die Umwelt gelangen. (Foto: KIT)

Per- und polyfluorierte Alkylverbindungen, kurz PFAS, finden sich in unzähligen Produkten und damit auch im Hausmüll. Forschende des Karlsruher Instituts für Technologie (KIT) haben gemeinsam mit internationalen Partnern untersucht, welchen Anteil die Abfallverbrennung an der Freisetzung dieser Verbindungen hat. Ihre Versuche in der Verbrennungsanlage BRENDA am KIT ergaben, dass eine Verbrennung bei den in europäischen Anlagen üblichen Temperaturen und Verweilzeiten die Fluorpolymere nahezu vollständig abbaut. Die Studie wurde nun im Fachmagazin Chemosphere veröffentlicht. DOI: 10.1016/j.chemosphere.2024.143403

Beschichtete Pfannen, Coffee-to-go-Becher, Pizzakartons, Backpapier oder Medizinprodukte: Aufgrund ihrer wasser-, schmutz- und fettabweisenden Eigenschaften setzen Hersteller Fluorpolymere, eine Untergruppe der per- und polyfluorierten Alkylverbindungen (PFAS), in sehr vielen Konsumprodukten ein. Die Stoffgruppe umfasst mehr als 10 000 Verbindungen mit unterschiedlichen Eigenschaften – manche davon sind gesundheitsschädlich und werden zum Beispiel mit der Entstehung von Organschäden und Krebserkrankungen in Verbindung gebracht. PFAS reichern sich im Grundwasser und in Böden an und führen vielerorts zu Problemen für die Umwelt und die Gesundheit der Bevölkerung.

Forschende untersuchen Effektivität von Verbrennungsprozessen

Ob und in welchem Ausmaß die Verbindungen auch über die Abfallverbrennung in die Umwelt gelangen, hat jetzt ein Forschungsteam unter Leitung von Dr. Hans-Joachim Gehrmann vom Institut für Technische Chemie (ITC) des KIT geprüft. In Kooperation mit dem indischen Unternehmen Gujarat Fluorchemicals, einem Hersteller von Fluorpolymeren, führten die Wissenschaftlerinnen und Wissenschaftler Untersuchungen an der Kraftwerkspilotbrennkammer BRENDA (Brennkammer mit Dampfkessel) am KIT durch. Dabei wurden Fluorpolymere verbrannt und anschließend die PFAS-Konzentrationen im Waschwasser, in der Asche und im Abgas ermittelt. Die Versuche sollten klären, bei welchen Verbrennungstemperaturen und -bedingungen eine möglichst vollständige Zerstörung der PFAS erreicht werden kann.

Repräsentative Mischung von Fluorpolymeren

Die Forschenden testeten dabei zwei unterschiedliche Temperaturbedingungen: 860 Grad Celsius, entsprechend den europäischen Standards für die Hausmüllverbrennung, und 1 095 Grad Celsius, wie bei der Verbrennung von gefährlichem Abfall. In beiden Fällen betrug die Mindestverweilzeit für die Abgase in der Brennkammer zwei Sekunden. „Wir konnten zeigen, dass bei Verbrennungsbedingungen von 860 Grad Celsius und zwei Sekunden Verweilzeit ein fluorbezogener Abbaugrad von mehr als 99,99 Prozent erreicht werden kann. Das bedeutet, dass unter Bedingungen wie in einer Hausmüllverbrennung eine nahezu vollständige Mineralisierung der Fluorpolymere erreicht wurde“, berichtet Gehrmann. „Eine Verbrennung bei 1 095 Grad Celsius hat den Abbaugrad nicht signifikant erhöht. Das legt nahe, dass eine höhere Temperatur keinen wesentlichen Einfluss auf die Mineralisierung der Fluorpolymere hat.“

Für die Versuche in der Brennkammer wählte das Team eine repräsentative Mischung von Fluorpolymeren aus, die 80 Prozent der weltweit kommerziell genutzten Fluorpolymere abdeckt, darunter Polytetrafluorethylen (PTFE, auch bekannt als Teflon®), Polyvinylidenfluorid (PVDF), Perfluoralkoxy-Polymere (PFA) und Fluorkautschuk (FKM). 

Die Probenentnahme erfolgte an mehreren Stellen des Verbrennungsprozesses: am Ausgang der Nachverbrennungskammer, nach dem Kessel und im Abgas am Schornstein. Darüber hinaus analysierte das Team Proben aus dem Waschwasser und der Asche. Mit analytischen Verfahren wie gekoppelter Gaschromatografie-Massenspektrometrie wurden PFAS präzise identifiziert und quantifiziert. „Die Ergebnisse sind eine gute Nachricht für eine quasi restlose Entsorgung von Fluorpolymeren über die Hausmüllverbrennung nach europäischen Standards“, bewertet Gehrmann die Forschungsergebnisse. „Allerdings gelangen PFAS auch auf anderen Wegen in die Umwelt, die noch untersucht und bewertet werden müssen.“ 


Originalpublikation
Hans-Joachim Gehrmann, Philip Taylor, Krasimir Aleksandrov, Philipp Bergdolt, Andrei Bologa, David Blye, Priyank Dalal, Priyanga Gunasekar, Sven Herremanns, Deepak Kapoor, Meg Michell, Vanessa Nuredin, Michael Schlipf, Dieter Stapf: Mineralization of fluoropolymers from combustion in a pilot plant under representative european municipal and hazardous waste combustor conditions. Chemosphere, 2024. DOI: 10.1016/j.chemosphere.2024.143403


Informationen zu weiteren PFAS-Forschungsarbeiten des ITC 
 

Im Dialog mit der Gesellschaft entwickelt das KIT Lösungen für große Herausforderungen – von Klimawandel, Energiewende und nachhaltigem Umgang mit natürlichen Ressourcen bis hin zu Künstlicher Intelligenz, technologischer Souveränität und demografischem Wandel. Als Die Universität in der Helmholtz-Gemeinschaft vereint das KIT wissenschaftliche Exzellenz vom Erkenntnisgewinn bis zur Anwendungsorientierung unter einem Dach – und ist damit in einer einzigartigen Position, diese Transformation voranzutreiben. Damit bietet das KIT als Exzellenzuniversität seinen mehr als 10 000 Mitarbeitenden sowie seinen 22 800 Studierenden herausragende Möglichkeiten, eine nachhaltige und resiliente Zukunft zu gestalten. KIT – Science for Impact.

KAR, 14.10.2024

 

Christian Könemann
Pressesprecher
Tel: +49 721 608-41190
Fax: +49 721 608-43658
christian koenemann does-not-exist.kit edu

Kontakt für diese Presseinformation:

Dr. Sabine Fodi
Pressereferentin
Tel.: +49 721 608-41154
sabine fodi does-not-exist.kit edu
Das Foto kann in der höchsten uns vorliegenden Qualität angefordert werden unter:
presse does-not-exist.kit edu oder +49 721 608-41105.