Presseinformation 068/2017

Wachstumsmechanismus der Pilze entschlüsselt

Pilzzellen wachsen nicht durch Teilung, sondern verlängern sich nahezu unendlich – Wie das funktioniert haben Forscher am KIT herausgefunden – Videosequenz animiert Wachstum
Ein Protein (rot gefärbt) sitzt an der Spitze einer Hyphe von Aspergillus nidulans und kontrolliert das Wachstum. Die Hyphe ist etwa drei Mikrometer im Durchmesser und verlängert sich circa um ein Mikrometer pro Minute. (Foto: KIT)
Ein Protein (rot gefärbt) sitzt an der Spitze einer Hyphe von Aspergillus nidulans und kontrolliert das Wachstum. Die Hyphe ist etwa drei Mikrometer im Durchmesser und verlängert sich circa um ein Mikrometer pro Minute. (Foto: KIT)

Pilze wachsen mit röhrenartigen Zellen, die sich kilometerlang verlängern können, und das Wachstum findet ausschließlich an der Spitze statt. Wie das genau funktioniert, haben Forscher des Karlsruher Instituts für Technologie (KIT) nun herausgefunden: Baumaterialien werden auf Schienen durch die Pilzzellen transportiert und an deren äußerster Spitze verbaut. Wann das geschieht, regelt die Calciumkonzentration am Zellenende. Dies berichten die Wissenschaftler in den Proceedings of the National Academy of Sciences USA (PNAS).

 

Obwohl allgegenwärtig, gehören Pilze zu den für uns geheimnisvollsten Lebewesen. Bis in das späte 20. Jahrhundert hielt man Pfifferling und Totentrompete wegen ihrer sesshaften Lebensweise für Pflanzen. Heute weiß man, dass Fungi ein eigenes Reich bilden, welches dem der Tiere näher ist. Experten vermuten, dass es bis zu fünf Millionen Pilzarten gibt – viel mehr als Pflanzen oder gar Insekten. Die Mehrheit davon sind Hyphenpilze. So genannt, weil ihre fadenförmigen Zellen, die Hyphen, im Boden feine weitläufige Geflechte bilden. Diese Myzelien bilden den eigentlichen Pilz, während die im allgemeinen Sprachgebrauch als Pilz bezeichneten Hüte der Ständerpilze lediglich deren Fruchtkörper darstellen. Wie die einzelnen Hyphen durch endloses Ausdehnen ihrer mikroskopisch kleinen Spitzen wachsen und teils gigantische Myzelien bilden, haben Professor Reinhard Fischer vom Institut für Angewandte Biowissenschaften (IAB), Professor Gerd Ulrich Nienhaus vom Institut für Angewandte Physik (APH) und Professor Norio Takeshita, der unlängst eine Professur an der Tsukuba Universität in Japan angetreten hat, und ihre Arbeitsgruppen erforscht.

 

Anders als beim „gewöhnlichen“ Wachstumsprozess mittels Zellteilung, wächst die Hyphe (gleich den menschlichen Nervenzellen) quasi unendlich, indem sie sich an der Spitze immer weiter ausdehnt. So können kilometerlange Hyphen entstehen. Im Gegensatz zu ihrem eher bescheidenen oberirdischen Auftreten sind Hyphenpilze also wahre Wachstumsweltmeister. „Hyphen können mehr als einen Mikrometer pro Minute wachsen bei einem Durchmesser von drei Mikrometern“, sagt Reinhard Fischer. „Das ist, als ob wir Menschen pro Minute zehn Zentimeter dicker würden.“ Kein Wunder, dass der größte lebende Organismus der Erde ein Pilz ist: Einem Hallimasch in den kanadischen Wäldern wurde ein Durchmesser von 17 Kilometern attestiert.

 

Für andere Lebewesen ist diese Wachstumsstärke Fluch und Segen zugleich. Denn zum einen sind Pilze „neben den Bakterien die fleißigsten Wiederverwerter organischen Abfalls und machen dessen Bestandteile für kommende Generationen von Organismen nutzbar“, erklärt Fischer. Dazu spielen Pilze eine wichtige Rolle bei der Nährstoffaufnahme von Pflanzen: „Für jeden Meter Pflanzenwurzel gibt es einen Kilometer symbiotischer Pilzhyphen, die die Pflanze mit Nährstoffen versorgen“, so der Mikrobiologe. Auch helfen Pilze bei der Produktion von Arznei- (Penicillin, Zitronensäure) und Lebensmitteln (Käse, Salami). Zum anderen sind Hyphenpilze als Schädlinge von Nutzpflanzen und als Krankheitserreger auch beim Menschen gefürchtet.

 

Folglich ist ein Verständnis der Wachstumsprozesse der Hyphenpilze sowohl für Wissenschaftler interessant, die ihre Arbeit der Erforschung von deren positiven Eigenschaften widmen, als auch für solche, die sich der Bekämpfung der negativen Eigenschaften verschrieben haben, erläutert Fischer. Wie sie funktionieren wird von Forschungsgruppen international untersucht. Die genaue Koordination der Wachstumsprozesse war bislang noch unbekannt.

 

Dass sich die Myzelien nicht kontinuierlich ausdehnen, sondern in kurzen Schüben wachsen, wusste man. Wie diese Wachstumsexplosionen ausgelöst und gesteuert werden, lag allerdings im Dunkeln. „Da die Hyphen sich nur an der Spitze ausdehnen, stellte sich zunächst die Frage: woher wissen sie überhaupt, wo die Spitze ist?“, erläutert Fischer. Die Karlsruher Forscher fanden heraus, dass sie durch bestimmte Proteine markiert wird. Angeliefert wird das benötigte Baumaterial in Vesikeln, kleinen Bläschen, die auf Motorproteinen sitzen, die wiederum auf langen Schienen laufen. An der Spitze angekommen, heften sich die Vesikel an die Zellwand an und verschmelzen mit dieser, so dass sie sich weiter ausdehnt. Gesteuert werden die Wachstumsschübe mittels Calciumkonzentration am Hyphenende. „Ist die Konzentration gering, startet die Transportphase. Gibt es einen Calciumpuls, verschmelzen die Vesikel mit der Zellmembran und geben ihren Inhalt nach außen.“ Ebenfalls bemerkenswert:  Die Zellwand besteht aus Chitin, dem gleichen Material, aus dem die Panzer der Insekten aufgebaut sind.

 

Sichtbar gemacht hat das Team die Wachstumsprozesse, indem es Schlüsselelemente der Signal- und Transportmaschinerie in der Zelle mit fluoreszenten Proteinen markiert habe, erklärt Norio Takeshita. Zur quantitativen Bildgebung an den lebenden Pilzen wurden in diesem interdisziplinären Projekt modernste, höchstauflösende Methoden der optischen Fluoreszenzmikroskopie eingesetzt.

 

Die Wissenschaftler erwarten, dass ihre neuen Erkenntnisse bei der Entwicklung von Pilzvernichtungsmitteln sowohl in der Landwirtschaft als auch im klinischen Bereich und bei der Optimierung biotechnischer Prozesse in der Arzneimittelproduktion Anwendung finden werden.

 

Weitere Informationen:


http://www.pnas.org/content/114/22/5701.long

 

Pilzzelle im Wachstum

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 10 000 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 22 800 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.

mex, 26.05.2017
Kontakt:

 

Monika Landgraf
Chief Communication Officer
Leiterin Gesamtkommunikation
Pressesprecherin
Tel: +49 721 608-41150
Fax: +49 721 608-43658
presse does-not-exist.kit edu

Kontakt für diese Presseinformation:

Dr. Felix Mescoli
Pressereferent
Tel.: +49 721 608 41171
felix mescoli does-not-exist.kit edu
Das Foto kann in der höchsten uns vorliegenden Qualität angefordert werden unter:
presse does-not-exist.kit edu oder +49 721 608-41105.

Die Presseinformation steht auch als PDF-Datei zur Verfügung.