Presseinformation 012/2017

Höchstauflösende Lichtmikroskopie ohne Untergrund

Am KIT entwickelte STEDD-Nanoskopie ermöglicht deutlich bessere Bildqualität bei der Analyse dreidimensional angeordneter Moleküle und Zellstrukturen – Vorstellung in Nature Photonics
Eine Krebszelle unter dem Mikroskop: Das STED-Bild (links) weist einen niedrig aufgelösten Untergrund auf; beim STEDD-Bild (rechts) ist der Untergrund unterdrückt, sodass die Strukturen besser zu erkennen sind. (Abbildung: APH/KIT).
Eine Krebszelle unter dem Mikroskop: Das STED-Bild (links) weist einen niedrig aufgelösten Untergrund auf; beim STEDD-Bild (rechts) ist der Untergrund unterdrückt, sodass die Strukturen besser zu erkennen sind. (Abbildung: APH/KIT).

Forscher am Karlsruher Institut für Technologie (KIT) haben ein neues Verfahren der Fluoreszenzmikroskopie entwickelt: Die STEDD-Nanoskopie (STEDD steht für „Stimulated Emission Double Depletion“) liefert nicht nur höchstaufgelöste Bilder, sondern unterdrückt auch den Untergrund. Daraus ergibt sich eine deutlich bessere Bildqualität, von der besonders die Analyse dreidimensional dicht angeordneter subzellulärer Strukturen profitiert. Die Forscher präsentieren STEDD, eine Weiterentwicklung der STED-Methode, in der Zeitschrift Nature Photonics. (DOI: 10.1038/NPHOTON.2016.279)

 

Lichtoptische Mikroskopie stellt in den modernen Lebenswissenschaften eine essenzielle Methode dar. Unter anderem ermöglicht sie, lebende Zellen minimalinvasiv zu untersuchen. Konventionelle Lichtmikroskopie hat allerdings eine auf die halbe Wellenlänge des Lichts – etwa 200 Nanometer – begrenzte Auflösung, sodass feinste zelluläre Strukturen im Bild verschwimmen. In den vergangenen Jahren wurden verschiedene Verfahren der Nanoskopie entwickelt, welche die Beugungsgrenze überwinden und höchstaufgelöste Bilder liefern. Stefan W. Hell, Eric Betzig und William Moerner erhielten für ihre Nanoskopie-Methoden 2014 den Nobelpreis für Chemie. Nun haben Forscher am Karlsruher Institut für Technologie (KIT) die von Hell entwickelte STED (Stimulated Emission Depletion)-Nanoskopie so erweitert, dass sich der in den Bildern stets vorhandene Untergrund durch eine modifizierte Bildaufnahme effizient unterdrücken lässt. Die Bildqualität ist dadurch deutlich besser, was vor allem für die quantitative Datenanalyse von dreidimensional dicht angeordneten Molekülen und Zellstrukturen von großem Vorteil ist. In der Zeitschrift Nature Photonics präsentieren die Forscher um Professor Gerd Ulrich Nienhaus am Institut für Angewandte Physik (APH) und am Institut für Nanotechnologie (INT) des KIT das neue Nanoskopieverfahren namens STEDD (Stimulated Emission Double Depletion).

 

Bei der Fluoreszenzmikroskopie wird die zu untersuchende Probe mit einem stark fokussierten Lichtstrahl abgerastert, um Farbstoffmoleküle zur Aussendung von Fluoreszenzlicht anzuregen. Die Lichtquanten werden Pixel für Pixel registriert und so das Bild aufgebaut. Bei der STED-Nanoskopie wird der zum Abrastern verwendete Anregungsstrahl von einem weiteren Strahl überlappt, dem sogenannten STED-Strahl. Dessen Lichtintensität liegt ringförmig um den Anregungsstrahl herum; im Zentrum ist sie null. Außerdem ist der STED-Strahl zu größeren Wellenlängen hin verschoben. Der STED-Strahl nutzt einen von Albert Einstein vor 100 Jahren erstmals beschriebenen physikalischen Effekt, die stimulierte Emission, um die Fluoreszenzanregung überall abzuschalten – außer im Zentrum, wo der STED-Strahl keine Intensität besitzt. Dadurch wird die Anregung eingeschnürt, und es entsteht ein schärferer Lichtfleck für die Rasterung. Allerdings gibt es in dem hochaufgelösten STED-Bild stets einen niedrig aufgelösten Untergrund, der zum einen durch unvollständiges Abschalten, zum anderen durch Fluoreszenzanregung durch den STED-Strahl selbst verursacht wird.

 

Die Forschergruppe um Professor Gerd Ulrich Nienhaus hat die STED-Methode um einen zweiten STED-Strahl erweitert. Dieser STED2-Strahl folgt dem STED-Strahl zeitverzögert und löscht das im Zentrum vorhandene Nutzsignal aus, sodass nur noch die Untergrundanregung übrig bleibt. „Beim STEDD-Verfahren werden zwei Bilder aufgenommen“, erklärt Nienhaus. „Zum ersten und zum zweiten Bild tragen jeweils Photonen bei, die vor beziehungsweise nach dem Eintreffen des STED2-Strahls registriert werden.“ Durch gewichtete Differenzbildung wird das zweite Bild, das nur Untergrund enthält, vom ersten Bild, das Nutzsignal plus Untergrund enthält, Pixel für Pixel abgezogen. Ergebnis ist ein höchstaufgelöstes, untergrundfreies Bild.

 

Peng Gao, Benedikt Prunsche, Lu Zhou, Karin Nienhaus and G. Ulrich Nienhaus: Background suppression in fluorescence nanoscopy with stimulated emission double depletion. Nature Photonics, 2017. DOI: 10.1038/NPHOTON.2016.279

 

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 10 000 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 22 800 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.

or, 31.01.2017
Kontakt:

 

Monika Landgraf
Chief Communication Officer
Leiterin Gesamtkommunikation
Pressesprecherin
Tel: +49 721 608-41150
Fax: +49 721 608-43658
presse does-not-exist.kit edu

Kontakt für diese Presseinformation:

Monika Landgraf
Pressesprecherin
Tel.: +49 721 608-21150
Fax: +49 721 608-41150
monika landgraf does-not-exist.kit edu
Das Foto kann in der höchsten uns vorliegenden Qualität angefordert werden unter:
presse does-not-exist.kit edu oder +49 721 608-41105.

Die Presseinformation steht auch als PDF-Datei zur Verfügung.