Presseinformation 114/2014

Freie Poren für den Molekültransport

Forscher ermitteln Ursache für Barrieren an der Oberfläche metall-organischer Gerüste (MOFs) – Wichtig für die Speicherung von Gasen
Die Beladung hochporöser metall-organischer Gerüste (MOFs) aus metallischen Knoten (grün) und organischen Verbindungselementen (grau) mit Gastmolekülen wird oft durch Barrieren an der Oberfläche behindert. (Abbildung: IFG/KIT)
Die Beladung hochporöser metall-organischer Gerüste (MOFs) aus metallischen Knoten (grün) und organischen Verbindungselementen (grau) mit Gastmolekülen wird oft durch Barrieren an der Oberfläche behindert. (Abbildung: IFG/KIT)

Metall-organische Gerüste (MOFs) können Gase aufnehmen wie ein Schwamm, der Flüssigkeit aufsaugt. Daher eignen sich diese hochporösen Materialien zum Speichern von Wasserstoff oder Treibhausgasen. Die Beladung ist jedoch bei vielen MOFs durch Barrieren eingeschränkt. Wissenschaftler des Karlsruher Instituts für Technologie (KIT) präsentieren nun in der Zeitschrift „Nature Communications“, dass die Barrieren durch Korrosion der MOFs an der Oberfläche entstehen. Dies lässt sich mit wasserfreien Synthesestrategien vermeiden.

 

MOFs sind kristalline Materialien aus metallischen Knotenpunkten und organischen Verbindungselementen. Sie haben eine enorm große Oberfläche und sind hochporös. Daher können sie wie ein Schwamm andere Moleküle aufnehmen. Eine große Bedeutung besitzen MOFs, die inzwischen auch großtechnisch hergestellt werden, bei der Speicherung von Gasen: Wenn das Gas in den Festkörper eintritt, verflüssigt es sich teilweise und wird dadurch dichter, sodass sich erheblich mehr Moleküle im gleichen Volumen speichern lassen. MOFs eignen sich unter anderem für die Speicherung von Wasserstoff im Tank von wasserstoffbetriebenen Automobilen, aber auch für die Speicherung der Treibhausgase Kohlendioxid und Methan. Weitere Anwendungen liegen in den Bereichen Stofftrennung, Katalyse und Sensorik. Für jede Anwendung lässt sich das passende MOF maßschneidern; meist liegen sie als Pulver vor. In den vergangenen zehn Jahren wurden bereits über 20 000 verschiedene Vertreter dieser Materialklasse genau charakterisiert.

 

„Bei fast allen Anwendungen spielt die Beladung dieser hochporösen Kristalle mit Molekülen eine zentrale Rolle“, erklärt Lars Heinke vom Institut für Funktionelle Grenzflächen (IFG) des KIT. „Die Effizienz des Molekültransports in die porösen Partikel hinein ist für die Funktion der MOFs von kritischer Bedeutung.“ In vielen MOF-Materialien ist die Beladung jedoch durch sogenannte Oberflächenbarrieren stark eingeschränkt. Die Oberfläche des Schwamms ist sozusagen verklebt, die Poren sind verstopft, und die Beladung ist deutlich verzögert. Dies schränkt die Einsatzmöglichkeiten deutlich ein.

 

Um die Ursache dieser bisher unverstandenen Probleme aufzuklären, haben die IFG-Forscher die Entstehung der Oberflächenbarrieren erforscht. Dazu führten sie grundlegende Experimente an dünnen, auf Festkörpersubstraten aufgebauten und strukturell perfekten MOF-Schichten durch. Diese SURMOFs (SURface mounted Metal-Organic Frameworks) zeichnen sich durch eine hohe Ordnung und eine ideale Struktur aus. Dadurch gelang es den Forschern nachzuweisen, dass die Barrieren auf eine Korrosion der MOF-Schichten an der Oberfläche zurückzuführen sind. Die Wissenschaftler zeigten, wie die Korrosion der Oberflächenschichten voranschreitet. Sie stellten fest, dass Wasser dabei eine zentrale Rolle spielt. „Viele Wissenschaftler glaubten, daß diese Oberflächenbarrieren intrinsisch, also unvermeidbar sind. Das ist widerlegt – man kann MOFs auch so herstellen, dass sie ohne ,Stau‘ beladen werden können,“ sagt der Leiter des IFG des KIT, Professor Christof Wöll. Die nun in der Zeitschrift „Nature Communications“ publizierte Arbeit widerlegt eine Reihe von zuvor aufgestellten Hypothesen.

 

Die Ergebnisse der Arbeit können den verschiedenen Anwendungen der MOFs zugutekommen. Aufgrund der Erkenntnisse der KIT-Forscher gilt es für die Zukunft, wasserfreie Synthesestrategien für MOFs zu entwickeln. Damit lassen sich dann verbesserte Materialien realisieren, die einen barrierefreien Transport von Molekülen aus der Gas- und der flüssigen Phase in MOFs gewährleisten. So lässt sich die Effizienz dieser vielversprechenden Speicher- und Funktionsmaterialien noch weiter steigern.

 

L. Heinke, Z. Gu and Ch. Wöll, The surface barrier phenomenon at the loading of metal-organic frameworks. Nat. Commun. 5:4462 doi: 10.1038/ncomms5562 (2014).

 

 

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 10 000 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 22 800 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.

or, 31.07.2014
Kontakt:

 

Margarete Lehné
Pressesprecherin (kommissarisch)
Tel: +49 721 608-41105
Fax: +49 721 608-43658
presse does-not-exist.kit edu

Kontakt für diese Presseinformation:

Kosta Schinarakis
Pressereferent
Tel.: +49 721 608-21165
Fax: +49 721 608-43658
E-Mail:schinarakis does-not-exist.kit edu
Das Foto kann in der höchsten uns vorliegenden Qualität angefordert werden unter:
presse does-not-exist.kit edu oder +49 721 608-41105.

Die Presseinformation steht auch als PDF-Datei zur Verfügung.