Home | english  | Leichte Sprache | Impressum | Datenschutz | Sitemap | Intranet | KIT
Presseinformation 149/2010

Eine molekulare Taschenlampe

Erstmalig stellen Forscher des Karlsruher Instituts für Technologie (KIT) und der Universität Basel (UB) elektronische Bauelemente aus einzelnen Molekülen her und regen diese zum Leuchten an.
Maßgeschneiderte Moleküle mit Leuchtkern zwischen Nanoröhren aus Kohlenstoff (Foto:KIT )
Maßgeschneiderte Moleküle mit Leuchtkern zwischen Nanoröhren aus Kohlenstoff (Foto:KIT )

Die Arbeit der Forscherteams um den Chemiker Prof. Marcel Mayor (KIT und UB) und den Physikern Dr. Ralph Krupke (KIT) und Prof. Hilbert v. Löhneysen (KIT) stellt einen wichtigen Beitrag dar für die Entwicklung neuer optoelektronischer Bauelemente auf Basis einzelner Moleküle. In diesem Verfahren werden maßgeschneiderte Moleküle mit Leuchtkern zwischen Nanoröhrenelektroden aus Kohlenstoff platziert und elektrisch angesteuert. Als Nachweis der molekularen Elektrolumineszenz dient der spektroskopische Fingerabdruck des Moleküls. Sowohl die Moleküle als auch die Elektroden aus Kohlenstoff-Nanoröhren wurden von den Forschern eigens für dieses Verfahren entwickelt.

Molekulare Elektronik befasst sich mit dem Ladungstransport durch Moleküle. Langfristiges Ziel ist die Entwicklung molekularer Schaltkreise für leistungsfähige und energieeffiziente Computer. Die aktuelle Arbeit weist nach, dass einzelne, fest verdrahtete Moleküle elektrisch zum Leuchten angeregt werden können - diese für die Grundlagenforschung wichtige Erkenntnis erweitert die Vision der molekularen Elektronik um eine optoelektronische Komponente.

Für die Forscher bestand die besondere Herausforderung darin, sogenannte bottom-up Strukturen (Moleküle) in top-down Strukturen (Elektroden) zu integrieren und dabei die kritischen Abmessungen zu beherrschen. Um Ladungstransport und Lichtemission zu ermöglichen, müssen die elektronischen und optischen Eigenschaften von Molekül und Nanoröhrenelektroden aufeinander abgestimmt sein.  

Die von den Teamkollegen Dr. Sergio Grunder und Dr. Alfred Błaszczyk synthetisierten 7.5nm langen stäbchenförmigen Moleküle mit lichtaktiven Kern und die von Dr. Frank Hennrich in der Arbeitsgruppe von Prof. Manfred Kappes (KIT) aufbereiteten Kohlenstoff-Nanoröhren erfüllten diese Anforderungen. Durch kontrollierte strominduzierte Oxidation gelang es Dr. Christoph W. Marquard, Nanoröhren-Elektroden mit winziger Lücke (<10nm) zu erzeugen. Die in Lösung befindlichen Moleküle werden dann mittels Dielektrophorese, einer Feld-induzierten Form der Selbstorganisation, zwischen die Nanoröhrenelektroden abgeschieden.

Für die ausreichende Stabilität der Nanoröhren-Molekül-Nanoröhren Kontakte sorgen spezielle Ankergruppen an den Molekülenden. Wird an einen solchen Kontakt eine Spannung von einigen Volt angelegt, leuchtet das Molekül. Mit Hilfe eines empfindlichen Mikroskopaufbaus konnten die Forscher dieses Licht detektieren und nachweisen, dass es aus dem Kern des Moleküls emittiert wird. Die Arbeit erscheint als Advanced Online Publication (AOP) in der renommierten Zeitschrift Nature Nanotechnology.

Literatur:
Christoph W. Marquardt, Sergio Grunder, Alfred Błaszczyk, Simone Dehm, Frank Hennrich, Hilbert v. Löhneysen, Marcel Mayor, and Ralph Krupke: Electroluminescence from a single nanotube-molecule-nanotube junction. Nature Nanotechnology, published online 28. November 2010 | doi 10.1038/NNANO.2010.230

 

Weiterer Kontakt:

Dr. Ralph Krupke
Institut für Nanotechnologie
Tel.: +49 7274 82-6417
E-Mail:krupkeCuw2∂kit edu

 

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 300 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 25 100 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen.

tp, 30.11.2010
Das Foto kann in der höchsten uns vorliegenden Qualität angefordert werden unter:
presseAmi7∂kit edu oder +49 721 608-47414.

Die Presseinformation steht auch als PDF-Datei zur Verfügung.