Use of synthetic fuels can minimize greenhouse gas emissions of aircraft and heavy-duty transport in future. Thanks to a power-to-liquid plant built? set up? by INERATEC, which Karlsruhe Institute of Technology (KIT) and its spin-off operate together at Energy Lab 2.0, this appears to be within reach. The modular plant is accommodated in a container and planned to be produced in series by INERATEC.
“This is the last step on the way towards its industrial use,” says Professor Roland Dittmeyer from KIT’s Institute for Micro Process Engineering. “Plants of this design will contribute to making the global transport sector and chemical industry more sustainable with e-fuels and e-chemicals.” The plant is located at Energy Lab 2.0 on KIT’s Campus North. It produces a synthetic fuel mix, called syncrude, from carbon dioxide (CO2) and renewable hydrogen (H2). This syncrude can then be processed to synthetic kerosene, diesel, and gasoline. “Two reactor stages are required. We have coupled them for the first time and operate them with an improved design at a scale relevant to technology development,” Dittmeyer says. “We can produce up to 200 l of fuel per day.”
Innovative Technology by INERATEC
In one of the reactor stages, the long-chain hydrocarbons of the syncrude are produced from synthesis gas that mainly consists of carbon monoxide (CO) and H2 by means of Fischer-Tropsch synthesis (FT synthesis). The synthesis gas is produced by reverse water gas-shift reaction (RWGS) in the other upstream reactor. The RWGS reactor consists of microstructured plates that ensure flexible operation of the plant and enhance efficiency. The new plate design has now been demonstrated successfully in coupled operation. “With the optimized RWGS reactor, reactions can be controlled more precisely and the process is improved significantly,” says Dr. Tim Böltken, one of the managing directors of INERATEC. Every hour, up to 3 kg of hydrogen from electrolyzers can be processed. “This corresponds to an input of 125 kilowatts and sets new standards worldwide,” Böltken adds.
Series Production in the Next Step
Demonstration of INERATEC’s RWGS reactor technology on this scale represents the last important step in university research. The company plans to start series production soon and to quickly supply inexpensive power-to-X technology by further scaling, standardization, and reproduction. The corresponding IMPOWER2X project of KIT’s spinoff is funded with EUR 2.5 million by the European Union.
Already in 2019, during the first funding phase of the Kopernikus project P2X, the world’s first fully integrated plant for the production of “fuel from air and green power” was taken into operation at KIT. The plant produced about 10 l of synthetic fuels per day and combined CO2 separation from air with high-temperature electrolysis for synthesis gas production, FT synthesis, and product processing to fuel. Now, in the second funding phase of P2X, also this alternative process chain will be scaled to 250 kilowatts at Energy Lab 2.0. From 2022, it will produce about 200 to 300 l fuel per day directly from the air’s CO2. (mhe)
More information: https://www.elab2.kit.edu/english/193.php
More about the KIT Energy Center: https://www.energy.kit.edu/
In close partnership with society, KIT develops solutions for urgent challenges – from climate change, energy transition and sustainable use of natural resources to artificial intelligence, sovereignty and an aging population. As The University in the Helmholtz Association, KIT unites scientific excellence from insight to application-driven research under one roof – and is thus in a unique position to drive this transformation. As a University of Excellence, KIT offers its more than 10,000 employees and 22,800 students outstanding opportunities to shape a sustainable and resilient future. KIT – Science for Impact.
