Karlsruhe Institute of Technology

Press Release 055/2020

Bespoke Catalysts for Power-to-X

Using a synchrotron, scientists of KIT watch a power-to-X catalyst at work
2020_055_Massgeschneiderte Katalysatoren_72dpi
Test setup including high-pressure cell for the Fischer-Tropsch measurement campaign using the CAT-ACT measurement line at the KIT synchrotron. (Photo: Tiziana Carambia)

Suitable catalysts are of great importance for efficient power-to-X applications – but the molecular processes occurring during their use have not yet been fully understood. Using X-rays from a synchrotron particle accelerator, scientists of the Karlsruhe Institute of Technology (KIT) have now been able to observe for the first time a catalyst during the Fischer-Tropsch reaction that facilitates the production of synthetic fuels under industrial conditions. It is intended to use the test results for the development of bespoke power-to-X catalysts. The team has published the results in the scientific journal Reaction & Chemical Engineering. (DOI: 10.1039/c9re00493a)

 

 

On the way to a CO2-neutral society, power-to-X processes (P2X), i.e. processes that convert renewable energy into chemical energy sources, support the interlocking of different sectors. For example, synthetic fuels can be produced from wind or solar power, enabling climate-friendly mobility and goods transport without additional greenhouse gas emissions. The Fischer-Tropsch synthesis (FTS), which is necessary for this purpose among other things, yielding long-chain hydrocarbons for the production of petrol or diesel from carbon monoxide and hydrogen, is an established process in the chemical industry. However, even though more than one hundred years have passed since the discovery of this technology, the processes involved are still not fully understood scientifically: “This applies in particular to the structural changes in the catalysts required for the process under industrial conditions,” says Professor Jan-Dierk Grunwaldt from the Institute for Chemical Technology and Polymer Chemistry (ITCP) of KIT. “During the reaction, undesirable by-products can be formed or disruptive structural changes in the catalyst can occur. So far, it has not been explained sufficiently how this happens exactly during the reaction and what the effects on the overall process are.”

 

In a transdisciplinary project, in cooperation with P2X experts from the Institute for Micro Process Engineering (IMVT) and the Institute of Catalysis Research and Technology (IKFT) of KIT, the team has now achieved a breakthrough in understanding the FTS at the atomic level. “For the analysis, we use methods of synchrotron research, i.e. X-ray absorption spectroscopy and X-ray diffraction,” explains Marc-André Serrer (IKFT), one of the authors of the study. “This was the first time that we were able to watch, so to speak, an FTS catalyst at work at the atomic level under real process conditions.” While catalytic reactions had already been studied beforehand with a synchrotron, a special particle accelerator for generating particularly intense X-ray radiation, reactions that take place over a long period of time and at high temperatures and pressures, as in real-time operation at a P2X facility, have so far presented an obstacle. For the experiment at KIT, a novel high-pressure infrastructure has now been added to the CAT-ACT measuring line (CATalysis and ACTinide measuring line) designated for catalyst studies at the KIT synchrotron. With this infrastructure – which was built as part of the German Federal government's Kopernikus projects for the energy turnaround – it was possible to determine the function of a commercial cobalt-nickel catalyst operando at 250 °C and 30 bar for more than 300 hours during the FTS. This was also the first time that a sufficient quantity of hydrocarbons could be produced in such an experiment that could be analyzed afterwards.

 

 

Catalyst development at the computer

 

The experiment allowed the scientists to identify hydrocarbon deposits that hinder the diffusion of the reactive gases towards the active catalyst particles. “In the next step, these insights can be used to protect the catalyst specifically against these deactivation mechanisms,” says Grunwaldt. “This is done, for example, by modifying the catalyst with promoters, i.e. substances that improve the properties of the catalyst.” In the future, the novel atomic understanding of catalytic reactions will contribute to computer simulations for a fast, resource-saving and cost-effective development of bespoke catalysts for P2X processes.

 

 

Original publication:

Loewert, M., Serrer, M.-A., Carambia, T., Stehle, M., Zimina, A., Kalz, K. F., Lichtenberg, H., Saraçi, E., Pfeifer, P., & Grunwaldt, J.-D. (2020). Bridging the gap between industry and synchrotron: an operando study at 30 bar over 300 h during Fischer–Tropsch synthesis. Reaction Chemistry & Engineering, 5(6), 1071–1082. https://doi.org/10.1039/c9re00493a

 

More about the KIT Energy Center: http://www.energie.kit.edu

 

Further material:

Link to the publication in Reaction & Chemical Engineering: https://pubs.rsc.org/en/content/articlelanding/2020/re/c9re00493a#!divAbstract

 

 

 

Being “The Research University in the Helmholtz Association”, KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility, and information. For this, about 9,300 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 24,400 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life. KIT is one of the German universities of excellence.

mhe, 02.07.2020
Monika Landgraf
Contact:

Monika Landgraf
Head of Corporate Communications, Chief Press Officer

Phone: +49 721 608-41150
Fax: +49 721 608-43658
presseBbq8∂kit edu

Margarete Lehné

Margarete Lehné
Deputy Head of Press Office

Phone: +49 721 608-41157

margarete lehne∂kit edu

Contact for this press release:

Martin Heidelberger
Redakteur/Pressereferent
Tel.: +49 721 608-21169
martin heidelbergerAlt0∂kit edu
The photo in the best quality available to us may be requested by
presseNak4∂kit edu or phone: +49 721 608-47414.

The press release is available as a PDF file.