Press Release 082/2015

Spintronics: Molecules Stabilizing Magnetism

Organic Molecules Fixing the Magnetic Orientation of a Cobalt Surface / Building Block for a Compact and Low-cost Storage Technology / Publication in Nature Materials
2015_082_Spintronik_-_Molekuele_stabilisieren_Magnetismus_72dpi
The magnetic moments of the three organic molecules and the cobalt surface align very stably relative to each other. (Photo: M. Gruber, KIT)

Organic molecules allow producing printable electronics and solar cells with extraordinary properties. In spintronics, too, molecules open up the unexpected possibility of controlling the magnetism of materials and, thus, the spin of the flowing electrons. According to what is reported in Nature Materials by a German-French team of researchers, a thin layer of organic molecules can stabilize the magnetic orientation of a cobalt surface. (DOI: 10.1038/NMAT4361)

 

“This special interaction between organic molecules and metal surfaces could help to manufacture information storage systems in a more simple, flexible and cheaper way,” explains Wulf Wulfhekel from KIT. Microscopic magnets with constant orientation are used in hard disks, for example. With a view to “printable electronics”, organic molecules indeed could open up new simple production methods utilizing the self-organization of molecules.

 

In the present study, three molecular layers of the dye phtalocynine were applied to the surface of ferromagnetic cobalt. Whereas the magnetic moments of the molecules alternatingly align relative to the cobalt and relative to each other, the molecules form a so-called antiferromagnetic arrangement. The magnetic orientation of this combination of antiferromagnetic and ferromagnetic materials remains relatively stable even in the presence of external magnetic fields or cooling. “Surprisingly, the “lightweight” molecule wins this magnetic arm wrestling with the “heavyweight” ferromagnetic material and determines the respective properties,” Wulfhekel says. Systems of antiferromagnetic and ferromagnetic materials, among others, are used in hard disk reading heads. So far, manufacturing of antiferromagnets has been quite complex and time-consuming. Should molecules be suitable for use in the production, the antiferromagnets one day will simply come out of the printer.

 

The present publication is the result of a cooperation of researchers from KIT, University of Strasbourg, and Synchrotron SOLEIL. First author Manuel Gruber was member of the German-French Graduate School “Hybrid Organic- Inorganic Nanostructures and Molecular Electronics”, where different aspects of nanoelectronics, spintronics, and organic electronics are investigated.

 

Being “The Research University in the Helmholtz Association”, KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility, and information. For this, about 10,000 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 22,800 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life. KIT is one of the German universities of excellence.

kes, 21.07.2015
Contact:


Monika Landgraf
Chief Communication Officer
Head of Corporate Communications
Chief Press Officer
Phone: +49 721 608-41150
Fax: +49 721 608-43658
presse does-not-exist.kit edu

Contact for this press release:

Kosta Schinarakis
Press Officer
Phone: +49 721 608-21165
Fax: +49 721 608-43658
E-Mail:schinarakis does-not-exist.kit edu
The photo in the best quality available to us may be requested by
presse does-not-exist.kit edu or phone: +49 721 608-41105.

The press release is available as a PDF file.