Presseinformation 031/2017

Zuverlässiger molekularer Kippschalter entwickelt

Neue Dimensionen bei der Verkleinerung elektronischer Bauteile - Schalter kann beliebig oft betätigt werden - Zukünftig hunderfach kleinere Schaltkreise möglich
Der molekulare Kontakt kann sowohl mechanisch als auch elektrostatisch an- und ausgeschaltet werden. Foto: KIT
Der molekulare Kontakt kann sowohl mechanisch als auch elektrostatisch an- und ausgeschaltet werden. Foto: KIT

Die Nanotechnologie macht immer neue Miniaturrekorde möglich. Doch der Verkleinerung elektronischer Bauteile sind physikalische Grenzen gesetzt, die bald erreicht sein werden. Neuartige Materialien und Bauelemente sind gefragt. Hier setzt die molekulare Elektronik an. Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) ist es jetzt gelungen, einen molekularen Kippschalter zu entwickeln, der nicht nur in der gewählten Position verbleibt, sondern den man auch beliebig oft umlegen kann. Das berichten sie in der Fachzeitschrift Nature Communications.

 

Indem herkömmliche siliziumbasierte Bauteile wie hier ein Schalter durch einzelne Moleküle ersetzt werden, könne man zukünftig elektronische Schaltkreise konstruieren, die sich mehr als hundertfach enger auf einen Chip integrieren lassen, sagt Lukas Gerhard vom Institut für Nanotechnologie.

 

Das Grundgerüst des elektromechanischen Molekülschalters besteht aus nur wenigen Kohlenstoffatomen. Drei Schwefelatome bilden die Füße, die auf einer glatten Goldoberfläche fixiert sind. Der Kipphebel endet in einer Nitrilgruppe mit einem Stickstoffatom. Umgelegt wird er, indem eine Spannung angelegt wird und durch das resultierende elektrische Feld eine Kraft auf die Ladung des Stickstoffatoms ausgeübt wird. Dadurch wird Kontakt zu einer zweiten Elektrode (hier der Goldspitze eines Rastertunnelmikroskops) hergestellt.

 

Der gesamte Schalter misst gerade mal einen Nanometer. Zum Vergleich: Allein die kleinsten in der Halbleitertechnik verwendeten Strukturen haben eine Größe von zehn Nanometern. „Die molekulare Elektronik wäre also ein sehr großer Fortschritt“, sagt Gerhard.

 

Bemerkenswert ist indes nicht nur die Größe des Schalters, sondern vor allem, dass er zuverlässig und vorhersehbar arbeitet. Das heißt, eine Betätigung führt immer eindeutig zu einem Schaltzustand, der Kontakt ist also entweder offen oder geschlossen. Bislang scheiterte die Umsetzung dieses Prinzips oft daran, dass die elektrische Kontaktierung einzelner Moleküle nur unzureichend kontrollierbar war. Den KIT-Forschern ist es jetzt erstmalig geglückt, einen solchen Kontakt zwischen Molekül und Goldspitze elektrisch und mechanisch beliebig oft zu öffnen und zu schließen, ohne dass plastische Verformungen auftraten.

 

Geschlossener Schaltkreis. Foto: KIT

Umgelegt bleibt der Schalter in Position. Foto: KIT

 

Der Fortschritt in der synthetischen Chemie habe zwar dazu geführt, dass eine große Vielfalt von unterschiedlichen molekularen Bausteinen in milliardenfacher, Atom für Atom identischer Ausfertigung bereitgestellt werden könne, so Gerhard. „Um sie aber miteinander verschalten zu können, muss man sie so schonend berühren können, dass sie dabei nicht beschädigt werden.“ Darin, dass eine so schonende Verfahrensweise nun erstmals gelungen sei, sieht er die entscheidende Neuerung.

 

Die vorliegende Arbeit ist in einer engen Zusammenarbeit zwischen experimentellen Physikern und Chemikern des Instituts für Nanotechnologie am KIT und der Universität Basel und theoretischen Physikern der Universität Konstanz entstanden.

 

Hinweis an die Redaktionen: Viele weitere Fotos etwa für Online-Bildgalerien oder die Anfertigung von Animationen können hier als zip-Datei heruntergeladen werden.

 

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 800 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 22 300 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.

mex, 09.03.2017
Kontakt:

 

Monika Landgraf
Chief Communication Officer
Leiterin Gesamtkommunikation
Pressesprecherin
Tel: +49 721 608-41150
Fax: +49 721 608-43658
presse does-not-exist.kit edu

Kontakt für diese Presseinformation:

Dr. Felix Mescoli
Pressereferent
Tel.: +49 721 608 41171
felix mescoli does-not-exist.kit edu
Das Foto kann in der höchsten uns vorliegenden Qualität angefordert werden unter:
presse does-not-exist.kit edu oder +49 721 608-41105.

Die Presseinformation steht auch als PDF-Datei zur Verfügung.