Home | english  | Impressum | Sitemap | Intranet | KIT
Portrait Monika Landgraf
Kontakt:
Monika Landgraf
Leiterin Gesamt-kommunikation, Pressesprecherin

Tel: +49 721 608-47414
Fax: +49 721 608-43658
presse(a)kit.edu

Abonnement der Presseinformationen

per RSS-Feed

per E-Mail

Presseinformation 022/2014

Mikropartikel weisen Molekülen die Richtung

Forscher stellen dreidimensionale Strukturen mit drei chemisch verschiedenen Patches her
Die kleinen, aber hochkomplexen Partikel weisen chemisch verschiedene Segmente auf. (Abbildung: Angewandte Chemie)
Die kleinen, aber hochkomplexen Partikel weisen chemisch verschiedene Segmente auf. (Abbildung: Angewandte Chemie)

Neuartige Mikropartikel, deren Oberfläche aus drei chemisch verschiedenen Segmenten besteht, hat ein Team von Forschern des Karlsruher Instituts für Technologie (KIT) und der University of Michigan/USA hergestellt. Die Segmente lassen sich mit unterschiedlichen (Bio)Molekülen bestücken. Dank der gezielten räumlichen Ausrichtung der angekoppelten Moleküle eignen sich die Mikropartikel für innovative Anwendungen in Medizin, Biochemie und Technik. Über ihre Entwicklung berichten die Forscher in der Zeitschrift „Angewandte Chemie“.

 

„Mikropartikel mit strukturierten Oberflächen, die sich selektiv mit unterschiedlichen Molekülen beladen lassen, besitzen enormes Potenzial für medizinische Anwendungen“, sagt Professor Christof Wöll, Leiter des KIT-Instituts für Funktionelle Grenzflächen (IFG) und Sprecher des Helmholtz-Programms BioGrenzflächen, in dessen Umfeld die Arbeit ausgeführt wurde. Die neuen Mikropartikel könnten sich künftig beispielsweise in der Krebstherapie einsetzen lassen – beladen mit drei verschiedenen Substanzen, von denen eine die Krebszelle erkennt, die zweite die Zellwand öffnet und die dritte die Krebszelle zerstört.

 

Eine weitere mögliche Anwendung der 3D-Mikropartikel liegt in der künstlichen Herstellung biologischer Gewebe, wobei die Partikel gezielt mit biologischen Zellen interagieren. Aber auch technische Anwendungen wie die Herstellung von Mikromaschinen und Nanorobotern können von diesen zwar kleinen, aber hochkomplexen Partikeln profitieren. Sie ermöglichen beispielsweise einen selbstorganisierten Aufbau dreidimensionaler Strukturen. Bewegliche Miniaturbauteile, benötigt beispielsweise für Sensoren oder Roboterarme, lassen sich mithilfe von segmentierten Mikropartikeln herstellen, bei denen ein Segment in Reaktion auf einen Reiz an- und wieder abschwellen kann.

 

„Während die räumlich gesteuerte Präsentation chemischer und biologischer Liganden für zweidimensionale Substrate schon gut etabliert ist, gibt es bisher nur sehr wenige Verfahren für die räumlich kontrollierte Dekoration dreidimensionaler Objekte, wie Mikropartikel“, erläutert Jörg Lahann, Professor am IFG des KIT und an der University of Michigan. Um drei abgegrenzte, chemisch verschiedene Segmente – auch als Patches bezeichnet – auf einem Mikropartikel zu erhalten, setzen Lahann und Kollegen sogenanntes elektrohydrodynamisches Co-Jetting ein: Sie pumpen drei verschiedene Polymerlösungen durch parallele Kapillaren. Die ausgestoßene Flüssigkeit wird durch ein elektrisches Feld beschleunigt und dabei stark gestreckt. Zugleich verdunstet das Lösungsmittel.

 

Übrig bleibt eine Mikrofaser aus drei verschiedenen Kompartimenten. Durch Schneiden der Faser entstehen Mikropartikel, die sich dann entsprechend aus drei chemisch verschiedenen Patches zusammensetzen. Als Ausgangsmaterial dienen drei bioabbaubare Polymere auf Milchsäurebasis. Die Polymere sind mit drei verschiedenen chemischen Ankergruppen ausgestattet. An diese können in orthogonalen, das heißt sich nicht gegenseitig beeinflussenden Oberflächenreaktionen unterschiedliche Moleküle angekoppelt werden. Mithilfe fluoreszenzmarkierter Biomoleküle haben die Forscher nachgewiesen, dass tatsächlich ein Mikropartikel drei verschiedene Patches aufweist. Das nächste Ziel der Wissenschaftler ist, die Mikropartikel auf rund 200 Nanometer zu verkleinern, um sie besser auf praktische Anwendungen abzustimmen.

 

Sahar Rahmani, Sampa Saha, Hakan Durmaz, Alessandro Donini, Asish C. Misra, Jaewon Yoon, and Joerg Lahann: Chemically Orthogonal Three-Patch Microparticles. Angewandte Chemie, 2014. DOI: 10.1002/anie.201310727

 

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 300 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 26 000 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen.

or, 14.02.2014