Karlsruher Institut für Technologie

Presseinformation 173/2016

Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt

Eiskristalle wachsen zuerst an Defekten auf der Oberfläche der Partikel – Publikation in Science
Eiskristalle auf einem Feldspatkristallit unter dem Elektronenmikroskop. Obwohl sie auf verschiedenen Ebenen des Feldspats wachsen, sind sie zueinander ausgerichtet. (Abbildung: Alexei Kiselev und Dagmar Gerthsen/KIT)
Eiskristalle auf einem Feldspatkristallit unter dem Elektronenmikroskop. Obwohl sie auf verschiedenen Ebenen des Feldspats wachsen, sind sie zueinander ausgerichtet. (Abbildung: Alexei Kiselev und Dagmar Gerthsen/KIT)

Feldspatpartikel wirken in der Atmosphäre als Gefrierkeime, die in Wolken Eiskristalle wachsen lassen und Niederschläge ermöglichen. Warum das so ist, haben Forscher am Karlsruher Institut für Technologie (KIT) und am University College London (UCL) nun über elektronenmikroskopische Beobachtungen und molekulardynamische Computermodellierungen aufgeklärt: Als eigentlicher Eiskeim dient eine quasi versteckte Kristallfläche des Feldspats, die nur an Oberflächendefekten zutage tritt. Ihre für das Verständnis der Wolken- und Niederschlagsbildung wesentlichen Erkenntnisse präsentieren die Forscher im Magazin Science. (DOI: 10.1126/science.aai8034)

 

Rund 90 Prozent der Niederschläge über den Kontinenten hängen davon ab, dass sich in Wolken Eiskristalle bilden, die durch ihr zunehmendes Gewicht nach unten fallen. Aber das Wasser in den Wolken gefriert nur dann, wenn bestimmte Partikel vorhanden sind, an denen Eiskristalle wachsen können. Von allen Aerosolpartikeln, das heißt festen Schwebeteilchen in der Atmosphäre, sind allerdings nur wenige als Gefrierkeime wirksam. Diese seltenen Aerosolpartikeln bestimmen den Niederschlag auf der Erde entscheidend mit – umso wichtiger ist es zu verstehen, was sie gegenüber anderen Partikeln auszeichnet. „Mit einem solchen Verständnis ließe sich besser vorhersagen, wie Eis- und Niederschlagsbildung in Wolken sich in Zukunft durch Klimawandel und Feinstaubbelastung verändern werden“, sagt Professor Thomas Leisner, Leiter des Instituts für Meteorologie und Klimaforschung – Atmosphärische Aerosolforschung (IMK-AAF) des KIT.

 

Wissenschaftlern des IMK-AAF ist es nun gemeinsam mit Forschern des Laboratoriums für Elektronenmikroskopie (LEM) des KIT sowie des University College London (UCL) gelungen, diese Frage für die wichtigste Klasse der anorganischen atmosphärischen Gefrierkeime zu klären, nämlich für Staubpartikel aus dem Mineral Feldspat. Wie sie im Magazin Science berichten, kombinierten die Wissenschaftler elektronenmikroskopische Beobachtungen und molekulardynamische Computermodellierungen, um erstmals die atomare Natur dieses wichtigen anorganischen Gefrierkeims zu ermitteln. Sie zeigten, dass das Eis auf den Feldspatkristalliten nicht auf den von außen zugänglichen Kristallflächen zu wachsen beginnt, sondern an mikroskopischen Defekten wie Stufen, Rissen und Vertiefungen. Obwohl diese Defekte zufällig über den gesamten Kristallit verteilt auftreten, zeigen alle Eiskristalle exakt die gleiche Orientierung in Bezug auf das Feldspat-Kristallgitter.

 

Aus dieser Beobachtung und aus umfangreichen Computersimulationen auf der molekularen Ebene leiteten die Wissenschaftler ab, dass eine ganz bestimmte Kristallfläche, die nur an Defekten auf der Oberfläche des Feldspat-Kristallits zugänglich wird, als eigentlicher Keim für das Eiswachstum dient. „Feldspat ist einer der aktivsten atmosphärischen Gefrierkeime, aber der Grund dafür war unklar“, erklärt Professor Angelos Michaelides vom UCL. „Nun, da wir den aktiven Ort der Eisnukleation identifiziert haben, ist ein wichtiger Stein im Puzzle gefunden.” Die Forscher erwarten nun, dass ähnliche Untersuchungen die Eigenschaften weiterer Mineralien, die als Gefrierkeime wirken, aufklären können.

 

Alexei Kiselev, Felix Bachmann, Philipp Pedevilla, Stephen J. Cox, Angelos Michaelides, Dagmar Gerthsen and Thomas Leisner: Active sites in heterogeneous ice nucleation – the example of K-rich feldspars. Science, 2016. DOI: 10.1126/science.aai8034

 

 


Details zum KIT-Zentrum Klima und Umwelt: http://www.klimaumwelt.kit.edu
 

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 300 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 24 400 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.

or, 09.12.2016
Monika Landgraf
Kontakt:

Monika Landgraf
Leiterin Gesamt-kommunikation, Pressesprecherin

Tel: +49 721 608-41150
Fax: +49 721 608-43658
presseBrr8∂kit edu

Margarete Lehné

Margarete Lehné
Stellvertretende Pressesprecherin

Tel.: +49 721 608-41157

margarete lehne∂kit edu

Kontakt für diese Presseinformation:

Margarete Lehné
stellv. Pressesprecherin
Tel.: +49 721 608-21157
Fax: +49 721 608-43658
margarete lehneYok6∂kit edu
Das Foto kann in der höchsten uns vorliegenden Qualität angefordert werden unter:
presseAph0∂kit edu oder +49 721 608-47414.

Die Presseinformation steht auch als PDF-Datei zur Verfügung.