Presseinformation 157/2016

Simulation von Lithium-Ionen-Batterien

DFG fördert am KIT neues Graduiertenkolleg SiMET – Promovierende untersuchen mechanisch-elektrisch-thermische Effekte vom Partikel bis zur Zelle
Die miteinander verbundenen mechanisch-elektrisch-thermischen Vorgänge in Lithium-Ionen-Batterien sind Gegenstand der Arbeiten im Graduiertenkolleg SiMET.
Die miteinander verbundenen mechanisch-elektrisch-thermischen Vorgänge in Lithium-Ionen-Batterien sind Gegenstand der Arbeiten im Graduiertenkolleg SiMET.

Die Deutsche Forschungsgemeinschaft (DFG) richtet am Karlsruher Institut für Technologie (KIT) ein neues Graduiertenkolleg ein: „SiMET – Simulation mechanisch-elektrisch-thermischer Vorgänge in Lithium-Ionen-Batterien“ startet 2017 und wird für zunächst viereinhalb Jahre gefördert. In dem Graduiertenkolleg arbeiten Doktorandinnen und Doktoranden verschiedener wissenschaftlicher Disziplinen an Modellen, mit denen sich unter anderem simulieren lässt, wie sich Unterschiede im inneren Aufbau auf das Verhalten der Batterien im Betrieb auswirken.

 

Batterien gelten als Schlüsselkomponenten für viele Zukunftstechnologien, besonders die Elektromobilität oder die Stromversorgung aus fluktuierenden erneuerbaren Quellen. In vielen mobilen und stationären Anwendungen von Smartphones über Elektroautos bis hin zu Batteriespeichern im Stromnetz sind inzwischen Lithium-Ionen-Batterien anzutreffen. Im Rahmen des neuen Graduiertenkollegs SiMET am KIT arbeiten Nachwuchsforscherinnen und -forscher im Rahmen interdisziplinärer Doktorarbeiten an der Modellbildung und der Entwicklung numerischer Simulationsmethoden für die in Lithium-Ionen-Batterien ablaufenden, eng miteinander verknüpften mechanisch-elektrisch-thermischen Prozesse. Solche Simulationsmethoden bilden ein wichtiges Werkzeug für die weitere Entwicklung effizienter und leistungsfähiger Batteriesysteme.

 

Die Arbeiten in SiMET werden sowohl der Multiskalarität der Materialien und Komponenten in Batterien als auch der Multidisziplinarität der in ihnen ablaufenden Vorgänge gerecht: Sie befassen sich mit sämtlichen Einheiten von Partikeln innerhalb der mikroporösen Elektroden bis zur kompletten Zelle, mit Größen von wenigen Nanometern bis zu etlichen Zentimetern. Dabei verbinden sie verschiedene Disziplinen wie Verfahrenstechnik, Elektrotechnik, Maschinenbau, Materialwissenschaften, Chemie, Physik und Mathematik. Die Modelle zielen auf ein breites Spektrum von vor allem ingenieurtechnischen Fragen ab. So sollen sie unter anderem erlauben, das elektrische Betriebsverhalten in einem großen Temperaturbereich zu simulieren, die Wirkung verschiedener innerer Strukturen auf die Leistungsfähigkeit der Zellen aufzeigen und zum Verständnis mechanisch und thermisch induzierter Schädigungseffekte beitragen. Ergänzend zur modellgestützten Simulation bietet SiMET einen direkten Zugang zu experimentellen Möglichkeiten von der Computertomographie bis zu komplexen elektrochemischen und thermischen Messverfahren. Die Experimente dienen dazu, Parameter zu bestimmen und die Modelle zu validieren.

 

„Wir freuen uns, dass eine große Gruppe von Doktorandinnen und Doktoranden nun die Möglichkeit erhält, über mehrere Jahre gemeinsam in diesem zukunftsorientierten und anspruchsvollen Themenfeld zu forschen“, erklärt der Sprecher von SiMET, Professor Thomas Wetzel, Leiter des Bereichs Wärme- und Stoffübertragung am Institut für Thermische Verfahrenstechnik (TVT) des KIT. „SiMET wird durch eine enge Zusammenarbeit zwischen den beteiligten Ingenieur- und Naturwissenschaften mit ihren vielfältigen Sichtweisen geprägt. Wir sind überzeugt, dass so beste Voraussetzungen für die Gewinnung neuer Erkenntnisse und die Entwicklung neuer Methoden durch die Promovierenden entstehen.“

 

An SiMET beteiligt sind, neben Professor Thomas Wetzel als Sprecher, Professor Wolfgang Bessler von der Hochschule Offenburg als stellvertretender Sprecher sowie Professor Willy Dörfler, PD Dr. Gisela Guthausen, Professorin Ellen Ivers-Tiffée, Professor Marc Kamlah, Dr. Reiner Mönig, Professor Hermann Nirschl und Dr. André Weber vom KIT und Professor Arnulf Latz vom Helmholtz-Institut Ulm.

 

Die Kollegiatinnen und Kollegiaten sollen aus allen genannten wissenschaftlichen Disziplinen kommen. Sie erhalten eine strukturierte Ausbildung auf individueller, kollegübergreifender und internationaler Ebene, unter anderem über interdisziplinäre Betreuungstandems, ein breites fachliches und überfachliches Kursprogramm, spezifische Softwarekurse, Teilnahme an Konferenzen und internationale Forschungsaufenthalte.

 

Die DFG richtet insgesamt 20 neue Graduiertenkollegs ein. Diese erhalten zusammen rund 87 Millionen Euro Fördermittel in viereinhalb Jahren. Ziel der Graduiertenkollegs ist die Qualifizierung von Doktorandinnen und Doktoranden im Rahmen eines thematisch fokussierten Forschungsprogramms sowie eines strukturierten Qualifizierungskonzepts.

 

Details zum KIT-Zentrum Energie: http://www.energie.kit.edu

 

 

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 10 000 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 22 800 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.

or, 17.11.2016
Kontakt:

 

Monika Landgraf
Chief Communication Officer
Leiterin Gesamtkommunikation
Pressesprecherin
Tel: +49 721 608-41150
Fax: +49 721 608-43658
presse does-not-exist.kit edu

Kontakt für diese Presseinformation:

Kosta Schinarakis
Pressereferent
Tel.: +49 721 608-21165
Fax: +49 721 608-43658
E-Mail:schinarakis does-not-exist.kit edu
Das Foto kann in der höchsten uns vorliegenden Qualität angefordert werden unter:
presse does-not-exist.kit edu oder +49 721 608-41105.

Die Presseinformation steht auch als PDF-Datei zur Verfügung.