Presseinformation 034/2016

Nature Communications: Laserquelle für Biosensoren

Forscher des KIT integrieren erstmals organische Laser auf Silizium-Photonik-Chips – Publikation in Nature Communications
Organischer Laser auf einem Silizium-Photonik-Chip: Eine optische Anregung von oben führt zu Laserlicht im Wellenleiter. (Bild: KIT)
Organischer Laser auf einem Silizium-Photonik-Chip: Eine optische Anregung von oben führt zu Laserlicht im Wellenleiter. (Bild: KIT)

In der Nanophotonik ist es erstmals gelungen, einen Laser mit organischem Verstärkungsmedium auf einem Silizium-Photonik-Chip zu integrieren. Dieser Ansatz eröffnet ein enormes Potenzial für kostengünstige Biosensoren, die wie heutige Blutzucker-Messstreifen einmalig und ohne Sterilisationsaufwand in der patientennahen Diagnostik verwendet werden könnten. In der Zeitschrift Nature Communications stellen die Forscher nun den neuen Laser vor. DOI: 10.1038/ncomms10864

 

„Dies ist das erste Mal, dass organische Laser auf einem Silizium-Photonik-Chip realisiert wurden“, berichtet Christian Koos, der am Institut für Photonik und Quantenelektronik (IPQ) und am Institut für Mikrostrukturtechnik (IMT) des KIT forscht. „Der Hauptvorteil der Laser besteht darin, dass sie sich in großen Stückzahlen kostengünstig herstellen lassen. Langfristig ist eine Fertigung zum Preis von einigen Cent pro Laser denkbar.“

 

Eine der wesentlichen Herausforderungen bei der Realisierung optischer Mikrochips besteht darin, eine Vielzahl verschiedener Bauteile kostengünstig auf einem gemeinsamen Substrat zu integrieren. Seit einigen Jahren ist es möglich, optische Bauelemente aus Silizium herzustellen. Diese sogenannte Silizium-Photonik greift auf hochentwickelte nanotechnologische Fertigungsprozesse der Mikroelektronik zurück und ermöglicht es damit, leistungsfähige photonische Bauteile in großen Stückzahlen und zu günstigen Kosten herzustellen.  Solche Bauteile, deren Größe nur noch Bruchteile von Mikrometern betragen, können nicht nur dazu beitragen, die Informationstechnik energieeffizienter zu machen, sondern eignen sich auch sehr gut für kompakte Biosensoren.

 

Lichtquellen auf dem Chip zu realisieren war bisher ein ungelöstes Problem, da sich der Halbleiter Silizium aufgrund seiner elektronischen Struktur kaum als Lichtemitter eignet – beim Übergang von Elektronen zwischen energetisch unterschiedlichen Zuständen wird die freiwerdende Energie bevorzugt als Wärme und nicht als Licht abgegeben.

 

Forscher des KIT haben nun eine neuartige Klasse von Lasern im Infrarotbereich entwickelt. Sie kombinieren dazu Silizium-Nanowellenleiter mit einem Polymer, dem ein organischer Farbstoff beigemischt ist. Die Energie zum Betrieb dieses „organischen“ Lasers wird von oben, senkrecht zur Chip-Fläche, mit einer gepulsten Lichtquelle zugeführt. Das entstehende Laserlicht wird direkt in einen Silizium-Nanowellenleiter eingekoppelt. Es gelang den Forschern, gepulste Laserstrahlung mit einer Wellenlänge von 1 310 Nanometern und einer Spitzenleistung von mehr als 1 Watt auf einem Chip zu erzeugen. In der Zeitschrift Nature Communications stellen die Wissenschaftler die neuen Infrarot-Laser vor. Durch den Einsatz verschiedener Farbstoffe und Laser-Resonatoren lässt sich die Wellenlänge der Laserstrahlung über einen breiten Bereich variieren.

 

Die Bauteile könnten unter anderem Biosensoren mit einer Vielzahl integrierter Laserlichtquellen ermöglichen, deren Wellenlänge auf den speziellen Anwendungsfall angepasst ist. Solche Chips enthalten Sensoren, die medizinisch relevante Substanzen messen. Um Kontaminationen zu vermeiden, ist es vorteilhaft, diese Chips möglichst kostengünstig herzustellen und nur einmal zu verwenden. Das ermöglicht den Einsatz direkt am Patienten oder in Arztpraxen (Point-of-care-Diagnostik).

 

Dietmar Korn, Matthias Lauermann, Sebastian Koeber, Patrick Appel, Luca Alloatti, Robert Palmer, Pieter Dumon, Wolfgang Freude, Juerg Leuthold & Christian Koos: Lasing in silicon-organic hybrid waveguides. Nature Communications, 2016. DOI: 10.1038/ncomms10864

 

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 10 000 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 22 800 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.

or, 07.03.2016
Kontakt:

 

Monika Landgraf
Chief Communication Officer
Leiterin Gesamtkommunikation
Pressesprecherin
Tel: +49 721 608-41150
Fax: +49 721 608-43658
presse does-not-exist.kit edu

Kontakt für diese Presseinformation:

Kosta Schinarakis
Pressereferent
Tel.: +49 721 608-21165
Fax: +49 721 608-43658
E-Mail:schinarakis does-not-exist.kit edu
Das Foto kann in der höchsten uns vorliegenden Qualität angefordert werden unter:
presse does-not-exist.kit edu oder +49 721 608-41105.

Die Presseinformation steht auch als PDF-Datei zur Verfügung.