Home | english  | Impressum | Sitemap | Intranet | KIT
Portrait Monika Landgraf
Kontakt:
Monika Landgraf
Leiterin Gesamt-kommunikation, Pressesprecherin

Tel: +49 721 608-47414
Fax: +49 721 608-43658
presse(a)kit.edu

Abonnement der Presseinformationen

per RSS-Feed

per E-Mail

Presseinformation 108/2015

Daten dauerhaft mit Licht speichern

Forscher entwickeln weltweit ersten nichtflüchtigen volloptischen Chip-Speicher auf Basis von Phasenübergangsmaterialien – Publikation in Nature Photonics
Volloptischer Datenspeicher: Ultrakurze Lichtpulse lassen das Material GST von kristallin zu amorph und zurück wechseln. Schwache Lichtpulse lesen die Daten aus. (Abbildung: C. Ríos/Universität Oxford)
Volloptischer Datenspeicher: Ultrakurze Lichtpulse lassen das Material GST von kristallin zu amorph und zurück wechseln. Schwache Lichtpulse lesen die Daten aus. (Abbildung: C. Ríos/Universität Oxford)

Den ersten dauerhaften volloptischen Speicher, der sich auf einem Chip integrieren lässt, haben Wissenschaftler des Karlsruher Instituts für Technologie (KIT) sowie der Universitäten Münster, Oxford und Exeter entwickelt. Damit ist ein wesentlicher Schritt auf dem Weg zum optischen Computer gelungen. Phasenübergangsmaterialien, die ihre optischen Eigenschaften je nach Anordnung der Atome ändern, ermöglichen es, mehrere Bits in einer einzigen Zelle zu speichern. Ihre Entwicklung stellen die Forscher in der Zeitschrift Nature Photonics vor. (10.1038/nphoton.2015.182) 

 

Licht bestimmt die Zukunft der Informations- und Kommunikationstechnologie: Computer könnten mit optischen Elementen schneller und energieeffizienter arbeiten. Längst ist es üblich, Daten mit Licht über Glasfaserkabel zu übertragen. Doch auf dem Computer werden die Daten nach wie vor elektronisch verarbeitet und gespeichert. Der elektronische Austausch von Daten zwischen den Prozessoren und dem Speicher begrenzt die Geschwindigkeit moderner Rechner. Diesen Engpass bezeichnen Experten als Von-Neumann-Flaschenhals. Um ihn zu überwinden, genügt es nicht, Speicher und Prozessor optisch zu verbinden, da die optischen Signale wieder in elektrische konvertiert werden müssen. Wissenschaftler suchen daher nach Wegen, sowohl Rechnungen als auch die Datenspeicherung rein optisch durchzuführen.

 

Forscher des KIT, der Westfälischen Wilhelms-Universität Münster, der Universität Oxford und der Universität Exeter haben nun den ersten nicht volatilen, das heißt dauerhaften optischen On-Chip-Speicher entwickelt. „Optische Bits lassen sich mit Frequenzen bis zu einem Gigahertz schreiben; damit erlaubt unser vollphotonischer Speicher eine extrem schnelle Datensicherung“, erklärt Professor Wolfram Pernice, der eine Arbeitsgruppe am Institut für Nanotechnologie (INT) des KIT leitete und inzwischen an der Universität Münster tätig ist. „Der Speicher ist sowohl mit der üblichen optischen Datenübertragung über Glasfaser als auch mit modernsten Prozessoren kompatibel“, ergänzt Professor Harish Bhaskaran von der Universität Oxford.

 

Der neue Speicher kann Daten auch ohne Stromzufuhr jahrzehntelang bewahren. Besonders attraktiv ist überdies seine Fähigkeit, mehrere Bits in einer einzigen, nur einige Milliardstel Meter großen Zelle zu halten (Multi-Level Memory – Mehrebenenspeicher). Anstelle der üblichen Informationswerte 0 und 1 lassen sich mehrere Zustände in einem Element sichern oder sogar eigenständige Berechnungen ausführen. Möglich machen es sogenannte Phasenübergangsmaterialien – neuartige Materialien, die ihre optischen Eigenschaften abhängig von der Anordnung der Atome ändern: Sie können in kürzester Zeit zwischen dem kristallinen (regelmäßigen) und dem amorphen (unregelmäßigen) Zustand wechseln. Für ihren Speicher verwendeten die Wissenschaftler das Phasenübergangsmaterial Ge2Sb2Te5 (GST). Mit ultrakurzen Lichtpulsen lässt sich der Wechsel von kristallin zu amorph (Daten speichern) bzw. von amorph zu kristallin (Daten löschen) auslösen. Lesen lassen sich die Daten mit schwachen Lichtpulsen.

 

Dauerhafte volloptische Speicher auf Chips könnten die Leistung von Computern künftig erheblich steigern und deren Energieverbrauch senken. Zusammen mit volloptischen Verbindungen könnten sie Latenzen reduzieren und die energieintensive Umwandlung optischer Signale in elektronische – und umgekehrt – überflüssig machen.

 

Carlos Ríos, Matthias Stegmaier, Peiman Hosseini, Di Wang, Torsten Scherer, C. David Wright, Harish Bhaskaran, Wolfram H.P. Pernice: On-chip integratable all-photonic nonvolatile multi-level memory. Nature Photonics. DOI: 10.1038/nphoton.2015.182

 

 

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9.300 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieurs-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 26.000 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen.

or, 22.09.2015

Weiterer Kontakt:

Kosta Schinarakis
Themenscout
Tel.: +49 721 608-41956
Fax: +49 721 608-43658
E-Mail:schinarakis@kit.edu
Das Foto kann in druckfähiger Qualität angefordert werden unter: presseBvu6∂kit edu oder +49 721 608-47414. Die Presseinformation steht auch als PDF-Datei zur Verfügung.