Home | english  | Impressum | Sitemap | Intranet | KIT
Portrait Monika Landgraf
Kontakt:
Monika Landgraf
Pressesprecherin, Leitung Presse

Tel: +49 721 608-47414
Fax: +49 721 608-43658
E-Mail

Abonnement der Presseinformationen

per RSS-Feed

per E-Mail

Presseinformation 147/2014

Neuer Werkstoff lässt Wasser und Öl abperlen

Lotuseffekt 2.0 durch superabweisende Oberfläche / Bundesforschungsministerium fördert KIT-Entwicklung mit 2,85 Millionen Euro
Der neuartige Werkstoff „Fluoropor“ stößt Wasser (links) und Öl (rechts) gleichermaßen ab, sodass sie nicht haften oder die Oberfläche benetzen können. (Bild: KIT/Rapp)
Der neuartige Werkstoff „Fluoropor“ stößt Wasser (links) und Öl (rechts) gleichermaßen ab, sodass sie nicht haften oder die Oberfläche benetzen können. (Bild: KIT/Rapp)

Autolack, an dem kein Schmutz haftet, Fassaden, von denen Graffiti-Farbe abgleitet, und Schuhe, die auf matschigen Wegen sauber bleiben - der Werkstoff „Fluoropor“ könnte all dies möglich machen. An der neuen Klasse hochfluorierter superabweisender Polymere könnten sowohl Wasser als auch Öle abperlen. Das BMBF fördert die Weiterentwicklung am KIT nun mit 2,85 Millionen Euro. Die Grundlagenforschung zielt unter anderem darauf, den neuen Werkstoff für universale Schutzbeschichtungen nutzbar zu machen.

 

Von Lotuspflanzen, aber auch von Weißkohlblättern ist das Phänomen bekannt: Wassertropfen perlen einfach von ihnen ab. Dieser klassische Lotuseffekt wird bereits seit geraumer Zeit technisch nutzbar gemacht, indem man raue Oberflächen mit besonderen chemischen Eigenschaften herstellt. „Allerdings funktioniert dieser Trick nicht für Öle – die Lotuspflanze ist wasser- nicht aber ölabweisend“, sagt Dr.-Ing. Bastian Rapp vom Institut für Mikrostrukturtechnik (IMT) des KIT. „Ölabweisende Oberflächen müssen chemisch anders aufgebaut sein, hierfür sind Fluorpolymere notwendig“, erklärt der Wissenschaftler. Fluorpolymere sind Hochleistungskunststoffe, die sehr hitzebeständig und chemisch überaus stabil sind. Zu dieser Stoffklasse gehört das unter dem Handelsnamen Teflon bekannte Beschichtungsmaterial für Antihaft-Bratpfannen.

 

„Kombiniert man die chemischen Eigenschaften von Fluorpolymeren mit der Rauigkeit der Lotuspflanze, erreicht man Oberflächen, von denen sowohl Wasser als auch Öle abperlen“, sagt Rapp. Im Labor ist es bereits gelungen, solche superabweisende Oberflächen mit Lotus 2.0-Effekt herzustellen. Im Praxiseinsatz haben sie sich allerdings bislang noch als unzureichend stabil herausgestellt. Vor allem die Empfindlichkeit gegen Abrieb erweist sich als ein großes Problem. Rapp arbeitet deshalb an der Entwicklung einer neuen Klasse fluorierter Polymere, von denen Wasser und Öl abperlen, und die im praktischen Einsatz wesentlich robuster sind. Diese als „Fluoropor“ bezeichneten Polymere sollen die Herstellung des Lotus 2.0-Effekts auf nahezu beliebigen Oberflächen ermöglichen.

 

Mit seinem Forschungsvorhaben war der junge KIT-Wissenschaftler nun beim NanoMatFutur-Nachwuchswettbewerb des Bundesministeriums für Bildung und Forschung (BMBF) erfolgreich. Sein Projekt „Fluoropor – chemisch inertes, mikro- bis nanoporöses ‚Teflon‘ mit einstellbarem Benetzungsverhalten“ erhält für die kommenden vier Jahre 2,85 Millionen Euro für den Aufbau einer wissenschaftlichen Nachwuchsgruppe. Das BMFB unterstützt mit dem NanoMatFutur-Wettbewerb hochqualifizierten wissenschaftlichen Nachwuchs in der Werkstoffforschung und Nanotechnologie. Gefördert wird anwendungsorientierte Grundlagenforschung mit hohem Potenzial für die industrielle Umsetzung.

 

Mit „Fluoropor“ können universale Schutzbeschichtungen gegen jede Form von Verschmutzung hergestellt werden, beispielsweise für Auto-Windschutzscheiben, an denen kein Wasser kondensiert und die im Winter nicht einfrieren. Der verarbeitenden Industrie könnten sehr feinporige Siebe zur Verfügung gestellt werden, die es dank ihrer Materialchemie und -struktur ermöglichen, Öl-Wasser-Gemische - die als Kühlschmierstoffe verwendet werden - wieder zu trennen.

 

An der Entwicklung des neuen Werkstoffs arbeiten in der von dem Maschinenbauingenieur Rapp geleiteten Nachwuchsgruppe unter anderem Chemieverfahrenstechniker sowie Fachleute für Organische Chemie, Materialchemie und Prozesstechnik zusammen. „Am KIT-Institut für Mikrostrukturtechnik und seiner Technologieplattform Karlsruhe Nano Micro Facility steht uns für unsere Forschung eine große Bandbreite an Analyse- und Strukturierungsmethoden zur Verfügung, zum Beispiel die Rasterkraft- und Rasterelektronenmikroskopie“, betont Rapp.

 

 

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

afr, 04.11.2014

Weiterer Kontakt:

Kosta Schinarakis
Presse, Kommunikation und Marketing, Themenscout
Tel.: +49 721 608-41956
Fax: +49 721 608-43658
E-Mail:schinarakis@kit.edu
Das Foto kann in druckfähiger Qualität angefordert werden unter: presseKus6∂kit edu oder +49 721 608-47414. Die Presseinformation steht auch als PDF-Datei zur Verfügung.