Home | english  | Leichte Sprache | Impressum | Datenschutz | Sitemap | Intranet | KIT
Portrait Monika Landgraf
Kontakt:
Monika Landgraf
Leiterin Gesamt-kommunikation, Pressesprecherin

Tel: +49 721 608-21150
Fax: +49 721 608-43658
presseLbb4∂kit edu

Abonnement der Presseinformationen

per RSS-Feed

Anleitung RSS-Feed einbinden

per E-Mail

Presseinformation 010/2013

Cell: Proteine verbinden sich wie ein Reißverschluss

Proteine in Zellmembranen verwenden geladene Seitenketten wie die Zähne eines Reißverschlusses, um sich zu falten und an andere Molekülen anzulagern
Wie die Zähne eines Reißverschlusses schmiegen sich die geladenen Aminosäuren (rot, blau) aneinander und verbinden so die Proteine.  (Bild: KIT )
Wie die Zähne eines Reißverschlusses schmiegen sich die geladenen Aminosäuren (rot, blau) aneinander und verbinden so die Proteine. (Bild: KIT )

Membranproteine sind die „molekularen Maschinen“ in biologischen Zellhüllen. Sie steuern etwa den Stofftransport durch die Membran, die Signalübertragung von Hormonen und die Photosynthese. Dabei spielt ihre Form, also die Faltung der Moleküle, eine entscheidende Rolle, um etwa Poren zu bilden. Forscher des Karlsruher Institutes für Technologie und der Universität Cagliari stellen nun im Fachmagazin Cell vor, wie sich die Proteine dabei eines neuartigen Reißverschlussprinzips bedienen, um Funktionseinheiten zu schaffen. (DOI: 10.1016/j.cell.2012.12.017) 

 

„Es ist faszinierend zu sehen, welch elegante Grundprinzipen die Natur beim Bau von molekularen Maschinen verwendet“, erklärt Anne Ulrich, Direktorin am Institut für Biologische Grenzflächen des KIT. „Ein ‚Ladungsreißverschluss‘ zwischen geladenen Seitenketten ist ein ganz unerwarteter Mechanismus, wie Membranproteine ihre Ladungen neutralisieren und auf diese Weise hydrophobe Zellmembranen durchspannen können.“

 

In der aktuellen Studie untersuchen Ulrich und ihr Team die Twin-Arginine Translocase (Tat), die in der Zellmembran von Bakterien als Export-Maschinerie für gefaltete Proteine dient. Mehrere Exemplare des Bausteins TatA lagern sich zu einer Pore zusammen und können dabei den Durchmesser der Pore flexibel an die zu transportierende Fracht anpassen. „Doch wie baut man eine Pore aus TatA-Proteinen? Wie können sie reversibel ein riesiges Loch in der Membran ausbilden, um den unterschiedlichsten Molekülen den Weg freizumachen, aber ohne dass die Zelle dabei leckschlägt?“, formuliert Ulrich die Ausgangsfragen.

 

Um das zu klären, haben die Forscher den molekularen Aufbau von TatA im Bakterium B. subtilis untersucht, das aus einer Kette von 70 Aminosäuren besteht. Die Strukturanalyse hat gezeigt, dass sie sich zu einer starren, stäbchenförmigen Helix auffaltet, auf die ein sehr geschmeidiger, langgestreckter Bereich folgt. Viele der Aminosäuren in der Helix und im angrenzenden Bereich tragen negative oder positive Ladungen, die einer Ionenladung entsprechen. „Erstaunlicherweise ist die Reihenfolge der Ladungen auf der Helix komplementär zu denen im angrenzenden Bereich des Proteins. Klappt man das Protein also an der Verbindungsstelle zusammen wie ein Scharnier, treffen immer positive und negative Ladungen aufeinander und ziehen sich an. Das Protein verbindet also seine beiden Bereiche so, wie die Zähne eines Reißverschlusses ineinandergreifen.

 

„Der Clou ist jedoch, dass dieses Bindungsprinzip auch gegenüber den Nachbarproteinen funktioniert“, erklärt Ulrich. Statt sich also ganz alleine zuzuklappen, geht jedes TatA Protein auch Reißverschlussbindungen mit seinen beiden Nachbarn ein. Wie Computersimulationen zeigen, entstehen dadurch stabile und zugleich flexible Verbindungen zwischen den benachbarten Molekülen. So können sich auf diese Weise beliebig viele Proteine zu einem insgesamt ungeladenen Ring zusammen lagern, der dann die TatA Pore in der hydrophoben Membran auskleidet. Dieses neuartige Reißverschlussprinzip scheint nicht nur beim Proteintransport eine Rolle zu spielen, sondern auch beim Angriff bestimmter antimikrobieller Peptide auf Bakterien, oder bei deren Stressantwort durch Biofilmbildung.

 

Weitere Informationen zur Arbeitsgruppe:

http://www.ibg.kit.edu/nmr

 

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 300 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 24 400 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.

kes, 18.01.2013

Weiterer Pressekontakt:

Kosta Schinarakis
Redakteur/Pressereferent
Tel.: +49 721 608-21165
Fax: +49 721 608-43658
E-Mail: schinarakisGzi6∂kit edu
Das Foto kann in der höchsten uns vorliegenden Qualität angefordert werden unter:
presseWmf3∂kit edu oder +49 721 608-47414.

Die Presseinformation steht auch als PDF-Datei zur Verfügung.