Home | english  | Impressum | Sitemap | Intranet | KIT
Portrait Monika Landgraf
Kontakt:
Monika Landgraf
Leiterin Gesamt-kommunikation, Pressesprecherin

Tel: +49 721 608-47414
Fax: +49 721 608-43658
presse(a)kit.edu

Presseinformation 156/2012

Science: Quantenoszillator reagiert auf Druck

Die Resonanzfrequenz einzelner atomarer Defekte lässt sich durch mechanische Verformung ändern / Materialien für nanoelektrische Bauteile lassen sich nun besser erforschen
Im Diagramm sind Frequenzspektren gegen mechanische Verformung aufgetragen. Jedes atomare Quantensystem hinterlässt eine charakteristische weiße Linie.  (Bild: KIT / CFN)
Im Diagramm sind Frequenzspektren gegen mechanische Verformung aufgetragen. Jedes atomare Quantensystem hinterlässt eine charakteristische weiße Linie. (Bild: KIT / CFN)

Supraleitende Quantenbits könnten in ferner Zukunft die Bausteine von leistungsfähigen Computern werden. Schon heute helfen sie, die Struktur von Festkörpern besser zu verstehen, wie Forscher des Karlsruher Instituts für Technologie heute im Magazin Science vorstellen. Mittels Josephson-Kontakten haben sie die Schwingungen einzelner Atome ausgemessen, mit denen diese zwischen zwei Positionen „tunnelten“, also quantenmechanisch oszillierten. Durch Verformen der Probe änderte sich sogar die Frequenz. (DOI: 10.1126/science.1226487).

„Wir sind nun in der Lage, die Frequenzen einzelner tunnelnder Atome im Festkörper direkt zu kontrollieren“, sagen Alexey Ustinov und Georg Weiß, Professoren des Physikalischen Instituts am KIT und Mitglieder des Centers for Functional Nanostructures CFN. Bislang hatten es die Forscher bildlich gesprochen mit einer verschlossenen Kiste zu tun, in der es vielfältig klapperte. Nun gibt es nicht nur die Möglichkeit, die einzelnen Objekte darin zu vermessen, sondern auch kontrolliert ihre physikalischen Eigenschaften zu verändern.

Die dafür eingesetzte Probe besteht aus einem supraleitenden Ring, der durch einen nanometerdicken Nicht-Leiter, einem sogenannten Josephson-Kontakt, unterbrochen ist. Das auf diese Weise gebildete Qubit kann sehr präzise zwischen zwei Quantenzuständen geschaltet werden. „Interessanterweise koppelt so ein Josephson-Qubit mit den anderen atomaren quantenmechanischen Systemen im Nicht-Leiter“, erklärt Ustinov. „Und über diese Kopplung haben wir die Frequenzen vermessen können.“

Bei Temperaturen knapp oberhalb des absoluten Nullpunktes sind die meisten Rauschquellen im Material ausgeschaltet. Die letzte Quelle von Störimpulsen sind die Atome des Materials selber, wenn sie zwischen zwei äquivalenten Positionen springen. „Diese Frequenzspektren der Atomsprünge können wir mit dem Josephson-Kontakt sehr genau vermessen“, so Ustinov. „Im übertragenen Sinne haben wir ein Mikroskop für die Quantenmechanik einzelner Atome.“

In dem vorliegenden Experiment wurden 41 springende Atome gezählt und deren Frequenzspektrum vermessen, während die Probe mit einem Piezoelement ein klein wenig verbogen wurde. Georg Weiß erklärt: „Die Atomabstände werden dadurch um eine Winzigkeit geändert, die Frequenzen der tunnelnden Atome ändern sich aber recht stark.“ Bis vor Kurzem konnte man nur die Gesamtheit aller tunnelnden Atome messen. Erst seit ein paar Jahren hat man die Technologie, die atomaren Tunnelsysteme einzeln anzusprechen. Die neu entwickelte Methode am KIT, atomare Quantensysteme zu kontrollieren, könnte wertvolle Einblicke geben, wie Qubits fit für die Anwendung gemacht werden könnten. Aber auch die Materialien konventioneller elektronischer Bauteile, wie etwa Transistoren, könnten mit dieser Methode untersucht und Grundlagen für weitere Miniaturisierung gelegt werden.

Webseiten der Forscher:
http://www.phi.kit.edu/ustinov-research.php
http://www.phi.kit.edu/weiss-atomares_tunneln.php


Das paper bei science:
http://www.sciencemag.org/magazine  

 

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

kes, 12.10.2012

Weiterer Kontakt:

Kosta Schinarakis
Themenscout
Tel.: +49 721 608-41956
Fax: +49 721 608-43658
E-Mail:schinarakis@kit.edu
Das Foto kann in druckfähiger Qualität angefordert werden unter: presseYve6∂kit edu oder +49 721 608-47414. Die Presseinformation steht auch als PDF-Datei zur Verfügung.