Home | english | Impressum | Sitemap | Intranet | KIT
Portrait Monika Landgraf
Kontakt:
Monika Landgraf
Pressesprecherin, Leitung Presse

Tel: +49 721 608-47414
Fax: +49 721 608-43658
E-Mail

Presseinformation 048/2011

Dritte Dimension in gezielter Zellkultivierung realisiert

CFN-Wissenschaftler entwickeln ein Zweikomponenten-Polymergerüste für die kontrollierte drei-dimensionale Zellkultur
Zelle im Zweikomponenten-Polymergerüst. Die Fotomontage basiert auf einer  Raster-Elektronen-Mikroskop- und einer Laser-Scanning-Mikroskop-Aufnahme.  (Bild: CFN)
Zelle im Zweikomponenten-Polymergerüst. Die Fotomontage basiert auf einer Raster-Elektronen-Mikroskop- und einer Laser-Scanning-Mikroskop-Aufnahme. (Bild: CFN)

Am Karlsruher Institut für Technologie (KIT) ist es Forschern des DFG-Centrums für Funktionelle Nanostrukturen (CFN) gelungen, gezielt Zellen auf dreidimensionalen Strukturen zu kultivieren. Das Faszinierende dabei: Den Zellen werden Mikrometer kleine "Griffe" am Gerüst angeboten, an denen sie anhaften können - und zwar nur an diesen, am restlichen Gerüst finden sie keinen Halt. Dadurch wird die Zellhaftung und somit die Zellform erstmalig präzise in 3D beeinflusst. Damit ist dem Team um Professor Martin Bastmeyer ein großer Fortschritt im Bereich des Biomaterial-Engineerings gelungen.

Bisher existieren bereits zahlreiche Ansätze für die Zellkultur in dreidimensionalen Umgebungen, die meist aus Agarose, Kollagenfasern oder Matrigel hergestellt werden. Sie sollen die flexible dreidimensionale Wirklichkeit, in der Zellen normalerweise agieren, simulieren und damit realitätsnähere Versuche ermöglichen, als dies mit Zellkulturen in "zweidimensionalen Petrischalen" möglich ist. Allerdings ist diesen Ansätzen bisher eines gemeinsam: Sie sind meist heterogen zusammengesetzt und weisen zufällige Porengrößen auf. Daher sind sie strukturell und biochemisch schlecht charakterisiert.

Ziel für die Forschungsgruppe Bastmeyer war es nun, definierte dreidimensionale Wachstumssubstrate für die Zellkultur zu entwickeln. Zellen sollen sich darin nicht zufällig, sondern nur an bestimmten Stellen anheften. So lassen sich Parameter wie Zellform, Zellvolumen, intrazelluläre Kraftentwicklung oder zelluläre Differenzierung systematisch in Abhängigkeit von der äußeren Geometrie der Umgebung bestimmen. Diese Erkenntnisse sind nützlich, um später gezielt dreidimensionale Wachstumsumgebungen für Gewebekulturen, die beispielsweise in der regenerativen Medizin benötigt werden, in größerem Maßstab herzustellen.

Die Aufnahme der Zelle im Zweikomponenten-Polymergerüst entstand mithilfe eines Laser-Scanning-Mikroskops (LSM). Grün gefärbt ist das Zytoskelett der Zelle, weiß wiedergegeben werden Teile des Zweikomponenten-Polymergerüstes, die "Zellgriffe" sind rot koloriert. (Bild: CFN)

Die Aufnahme der Zelle im Zweikomponenten-Polymergerüst entstand mithilfe eines Laser-Scanning-Mikroskops (LSM). Grün gefärbt ist das Zytoskelett der Zelle, weiß wiedergegeben werden Teile des Zweikomponenten-Polymergerüstes, die "Zellgriffe" sind rot koloriert. (Bild: CFN)



Dieses Ziel wurde mithilfe eines speziellen Polymergerüsts verwirklicht. Das Gerüst selbst besteht aus einem flexiblen, proteinabweisenden Polymer mit kleinen quaderförmigen Griffen aus einem proteinbindenden Material. Den Gerüstbau vollzogen die Wissenschaftler mithilfe des am CFN von den Physikern Professor Martin Wegener und Prof. Dr. Georg von Freymann entwickelten Verfahrens des Direkten Laserschreibens (DLS). Mit diesem war es möglich, eine proteinabweisende Struktur zu fabrizieren, die aus 25µm hohen Pfosten besteht, die in unterschiedlichen Höhen mit dünnen Sprossen verbunden sind. In einem zweiten Lithograpie-Schritt wurden dann die Haftgriffe exakt in der Mitte der Sprossen platziert. Mit Hilfe einer Lösung von Haftungsproteinen binden die Proteine nur an diesen kleinen Griffen. Einzelne Zellen besiedeln dann innerhalb von zwei Stunden das Gerüst und adhärieren nur an den vorgegeben Haftpunkten.
 
Mit dieser Grundlagenforschung haben die Wissenschaftler des CFN in Karlsruhe erstmalig geeignete Materialien angefertigt, in dem das Wachstum einzelner Zellen gezielt dreidimensional kontrolliert und manipuliert werden kann. Dies ist ein wichtiger Schritt zum allgemeinen Verständnis, wie die natürliche dreidimensionale Umgebung im Gewebe das Verhalten von Zellen beeinflusst.

Literatur
Klein, F., Richter, B., Striebel, T., Franz, C. M., Freymann, G. v., Wegener, M. and Bastmeyer, M., Two-Component Polymer Scaffolds for Controlled Three-Dimensional Cell Culture. Advanced Materials, Volume 23, Issue 11, pages 1341–1345, March 18, 2011, DOI: 10.1002/adma.201004060

DFG-Centrum für Funktionelle Nanostrukturen (CFN)
Das DFG-Centrum für Funktionelle Nanostrukturen (CFN) hat sich einem wichtigen Bereich der Nanotechnologie verschrieben: den funktionellen Nanostrukturen. Ziel ist es durch exzellente interdisziplinäre und internationale Forschung Nano-Strukturen mit neuen technologischen Funktionen darzustellen sowie den ersten Schritt von der Grundlagenforschung zur Anwendung zu gehen. Zurzeit arbeiten in Karlsruhe mehr als 250 Wissenschaftler und Techniker über das CFN vernetzt in mehr als 80 Teilprojekten zusammen. Der Fokus liegt auf den Bereichen Nano-Photonik, Nano-Elektronik, Molekulare Nanostrukturen, Nano-Biologie und Nano-Energie. www.cfn.kit.edu

Hintergrundinformation
Direktes Laserschreiben (DLS)
Das DLS ist ein fotolithografisches Verfahren zur Herstellung beliebiger dreidimensionaler Mikrostrukturen. Im Mikroskop wird Fotolack, der über einem computergesteuerten, piezogetriebenen Tisch in drei Ebenen bewegt wird, durch das Objektiv mit Femtosekunden-Impulsen eines stark fokussierten Laserstrahls belichtet. In dem eng umrissenen Bereich, in dem der Fotolack von dem Strahl getroffen wird, verändert sich die Löslichkeit des Materials. Je nach Art des Fotolacks werden im Entwicklungsbad die belichteten oder die unbelichteten Regionen ausgewaschen. Aufgrund der hohen optischen Auflösung können mit DLS Strukturierungen von 150 Nanometer (1 Nanometer = 1 Millionstel Millimeter) in Objekten mit einer seitlichen Ausdehnung von maximal 0,3 mm und einer Höhe von 0,08 mm realisiert werden. Das am Centrum für Funktionelle Nanostrukturen entwickelte DLS-System wird inzwischen über die Unternehmensausgründung Nanoscribe GmbH vertrieben. www.nanoscribe.de

Extrazelluläre Matrix (extracellular matrix, ECM)
Die ECM füllt vor allem im Bindegewebe den Raum zwischen den Zellen aus. Sie ist ein Gemisch unterschiedlicher Komponenten, dessen Zusammensetzung je nach Gewebetyp variiert. Wichtige Bestandteile sind verschiedene Arten von Kollagen, die vor allem Festigkeit und Elastizität verleihen. Fibronektin, Laminin oder Vitronektin sind als Adhäsionsproteine für die Anhaftung von Zellen von Bedeutung. Moleküle wie Hyaluronsäure oder Chondroitinsulfat verleihen zum Beispiel Knorpel seine besonderen Eigenschaften. Die ECM beeinflusst sowohl über ihre biochemische Zusammensetzung als auch über ihre mechanischen Eigenschaften die Zellen.

 

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Thematische Schwerpunkte der Forschung sind Energie, natürliche und gebaute Umwelt sowie Gesellschaft und Technik, von fundamentalen Fragen bis zur Anwendung. Mit rund 9400 Mitarbeiterinnen und Mitarbeitern, darunter mehr als 6000 in Wissenschaft und Lehre, sowie 24 500 Studierenden ist das KIT eine der größten Forschungs- und Lehreinrichtungen Europas. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

te, 21.03.2011

Weiterer Kontakt:

Tatjana Erkert DFG-Centrum für Funktionelle Nanostrukturen (CFN) Tel.: +49 721 608-43409 Fax: +49 721 608-48496 E-Mail: tatjana erkertNvc3∂kit edu
Das Foto kann in druckfähiger Qualität angefordert werden unter: presseEle4∂kit edu oder +49 721 608-47414. Die Presseinformation steht auch als PDF-Datei zur Verfügung.