Presseinformation 092/2009

Metamaterialien lassen Licht tanzen

Karlsruher entwickeln Polarisatoren im Nano-Maßstab
Bild Metamaterial unterm Rastermikroskop
Bild des Metamaterials unterm Rasterelektronenmikroskop, kombiniert mit einer Computergrafik. Die rot-weiße Spirale symbolisiert das zirkular polarisierte Licht. (Grafik: CFN )

In letzter Zeit haben Metamaterialien, mit denen sich elektromagnetische Wellen, also auch Licht, manipulieren lassen, die Phantasie von Forschern beflügelt. Diese künstlichen Strukturen besitzen Eigenschaften, wie man sie in der Natur nicht findet. Perfekte Linsen ohne Abbildungsfehler, ja sogar optische Tarnmäntel à la Harry Potter sind damit zumindest theoretisch möglich. Wissenschaftler am Karlsruher Institut für Technologie (KIT) beschreiben jetzt erstmals dreidimensionale Metamaterialien, die tatsächlich in spektroskopischen Messgeräten Anwendung finden könnten.

In der Arbeit, die die angesehene Fachzeitschrift Science bereits vor dem Abdruck als „Highlight“ auf ihrer Website veröffentlicht hat, kombiniert das Team um Professor Martin Wegener vom Centrum für Funktionelle Nanostrukturen und Professor Volker Saile vom Institut für Mikrostrukturtechnik unterschiedliche Technologien. (Science Express, 20.8.2009, 10.1126/science.1177031). Für die Herstellung der neuartigen Elemente wird zunächst mit einem Laser in einem Fotolack die Struktur gleichsam „geschrieben“ und danach aufgelöst. In einem zweiten Schritt wird in den dabei entstandenen Hohlräumen Gold galvanisch abgeschieden, bis sie gefüllt sind. Schließlich wird die Polymer-Urform weggeätzt. Zurück bleibt eine Struktur, die an eine Federkernmatratze erinnert: Sie besteht aus vielen regelmäßig angeordneten, winzigen Goldspiralen mit einem Durchmesser von nur wenigen hundert Nanometern (1 Nanometer = 1 Millionstel Millimeter). „Die Spiralen bringen Licht, das durch das Metamaterial strahlt, gleichsam das geordnete Walzertanzen bei“, umschreibt Wegener die Funktionsweise. Aufgrund ihres Aufbaus lassen die dreidimensionalen Metamaterialien nur einen der beiden Drehsinne einer elektromagnetischen Welle passieren. Sie wirken so als Filter für zirkular polarisiertes Licht.


Galvanische Goldabscheidung

Prinzip der galvanischen Goldabscheidung: Im Elektrolyt gelöste Gold-Komplexe diffundieren in die Hohlräume der Struktur, wo sie an der Kathode zersetzt werden. Die dabei entstehenden Goldionen werden abgeschieden und füllen schließlich die Hohlräume vollständig aus. (Grafik: CFN )



Diese Eigenschaft beruht darauf, dass Metamaterialien nicht nur die elektrische, sondern auch die magnetische Komponente einer elektromagnetischen Welle direkt beeinflussen. „Solche Strukturen können dies je nach Größe der Spiralen für ganz unterschiedliche Wellenlängen und über eine vergleichsweise große Bandbreite von Wellenlängen“, erläutert Justyna Gansel aus der Arbeitsgruppe Wegener. Ihre Ergebnisse räumen den bisher beobachteten Nachteil von Metamaterialien aus, dass ihre speziellen Eigenschaften nur auf ein enges Frequenzspektrum beschränkt sind.

Die neuartigen kompakten und breitbandigen zirkularen Polarisatoren könnten für zahlreiche Anwendungen in der optischen Spektroskopie von großem Interesse sein. Sie ließen sich zum Beispiel in handliche Geräte einbauen, die Gemische von Substanzen analysieren, welche selbst als Polarisatoren wirken. „Die rechtsdrehenden Milchsäuren aus dem Joghurt könnten so in Zukunft mit Hilfe von Metamaterialien bestimmt werden“, spekuliert Gansel.

Mit ihren Arbeiten an nanostrukturierten polarisierenden Metamaterialien setzen die KIT-Wissenschaftler quasi eine alte Karlsruher Tradition fort: Vor gut 120 Jahren benutze Heinrich Hertz einen, allerdings fast zwei Meter großen, linearen Polarisator für seine bahnbrechenden Forschungen über elektromagnetische Wellen.

Literatur:
Gold Helix Photonic Metamaterial as Broadband Circular Polarizer.
Justyna K. Gansel, Michael Thiel, Michael S. Rill, Manuel Decker, Klaus Bade, Volker Saile, Georg von Freymann, Stefan Linden, and Martin Wegener. Science Express Reports, veröffentlicht online am 20. August 2009; 10.1126/science.1177031.

 

Der Artikel kann als PDF-Datei beim CFN angefordert werden.

 

Hintergrundinformation:

Metamaterialien
Metamaterialien sind künstlich hergestellte Strukturen, die sich wie ein einheitliches Material verhalten und Eigenschaften besitzen, die in der Natur nicht vorkommen. Sie sind aus gleichartigen, regelmäßig angeordneten Elementen aufgebaut, die, obwohl deutlich größer als Atome in einem Kristall, wie diese mit elektromagnetischen Wellen wechselwirken. Mit nanotechnologischen Methoden produzierte Metamaterialien bestehen aus so kleinen Einheiten, dass sie elektromagnetische Wellen mit Wellenlängen vom Sichtbaren bis hin zum Infrarot-Licht beeinflussen können.

Polarisation
Als elektromagnetische Welle besteht Licht aus einer magnetischen und einer elektrischen Wellenkomponente, deren Schwingungsebenen senkrecht zueinander stehen. Wenn diese Wellen auf Objekte wie Glas oder feinste Partikel in der Luft (Dunst) treffen, wird das Licht reflektiert, wobei sich die Ausrichtung der Schwingungsebene ändern kann. Polarisationsfilter, wie man sie aus der Fotografie kennt, oder spezielle Sonnenbrillen filtern Wellen mit dieser veränderten Schwingungsebene heraus und lassen nur noch Lichtwellen passieren, die hierzu senkrecht schwingen. Das austretende Licht ist dann linear polarisiert. Unerwünschte Reflektionen in Glasscheiben oder diffuses Streulicht „verschwinden“ so für den Betrachter. Während bei linear polarisiertem Licht die elektrische Komponente in einer Richtung hin- und herschwingt, dreht sich bei zirkular polarisiertem Licht deren Richtung während einer Schwingung um 360 Grad. Die elektrische Komponente beschreibt bei ihrer Ausbreitung im Raum quasi eine Spirale.

 

 

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 10 000 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 22 800 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.

gk, 24.08.2009
Kontakt:

 

Monika Landgraf
Chief Communication Officer
Leiterin Gesamtkommunikation
Pressesprecherin
Tel: +49 721 608-41150
Fax: +49 721 608-43658
presse does-not-exist.kit edu

Das Foto kann in der höchsten uns vorliegenden Qualität angefordert werden unter:
presse does-not-exist.kit edu oder +49 721 608-41105.

Die Presseinformation steht auch als PDF-Datei zur Verfügung.