Presseinformation 144/2012

Schnelle Transistoren aus dem Drucker

KIT-Forscher zeigen Potenzial der elektrochemischen Ansteuerung für gedruckte Elektronik
Schema eines Feldeffekttransistors (FET) aus gedruckten anorganischen  Oxid-Nanopartikeln, verbunden mit druckbaren Verbund-Feststoff-Polymer-Elektrolyten  als Isolator der Steuerelektrode. (Abbildung: KIT, Christian Gruppe)
Schema eines Feldeffekttransistors (FET) aus gedruckten anorganischen Oxid-Nanopartikeln, verbunden mit druckbaren Verbund-Feststoff-Polymer-Elektrolyten als Isolator der Steuerelektrode. (Abbildung: KIT, Christian Gruppe)

Wissenschaftlern am Institut für Nanotechnologie (INT) des KIT ist ein entscheidender Fortschritt in der gedruckten Elektronik gelungen: Sie haben gezeigt, dass sich superschnelle Feldeffekttransistoren (FET) aus gedruckten anorganischen Oxid-Nanopartikeln herstellen lassen. Diese werden mit druckbaren Verbund-Feststoff-Polymer-Elektrolyten als Isolator der Steuerelektrode kombiniert. Über ihre Ergebnisse berichten die Karlsruher Forscher in der Zeitschrift „Advanced Functional Materials“.
 
Mit ihrer Arbeit haben die Karlsruher Forscher nachgewiesen, dass die Schaltgeschwindigkeit elektrochemisch angesteuerter gedruckter Transistoren nicht von der Leitfähigkeit des Elektrolyt-Isolators, sondern vielmehr von der Druckauflösung abhängt. Wenn es gelingt, die Verbund-Feststoff-Polymer-Elektrolyten (Composite Solid Polymer Electrolytes – CSPE) in ultradünnen Schichten zu drucken, lässt sich eine extrem hohe Schaltgeschwindigkeit erzielen. Wird der Elektrolyt-Isolator in Schichten von ein paar Hundert Nanometern aufgebracht, übersteigt die Schaltgeschwindigkeit ein Megahertz. „Diese Erkenntnis ebnet den Weg für elektrochemisch angesteuerte Bauteile in der gedruckten Elektronik“, erklärt Dr. Subho Dasgupta vom INT des KIT.
 
Feldeffekttransistoren (FET) weisen drei Elektroden auf: die Source als Quelle für die Ladungsträger, die Drain als Abflusselektrode und das Gate als Steuerelektrode. Der Widerstand und damit der Strom der Drain-Source-Strecke werden durch die Spannung zwischen Gate und Source und das dadurch entstehende elektrische Feld gesteuert. FET lassen sich in vielen Bereichen einsetzen, etwa für integrierte Schaltungen, wie sie beispielsweise zur Kennzeichnung von Waren und Gütern angewendet werden. Durch Druckverfahren lassen sich solche Transistoren in hohen Stückzahlen kostengünstig produzieren.
 
Subho Dasgupta, Ganna Stoesser, Nina Schweikert, Ramona Hahn, Simone Dehm, Robert Kruk, Horst Hahn: Printed and Electrochemically Gated, High-Mobility, Inorganic Oxide Nanoparticle FETs and Their Suitability for High-Frequency Applications. In: Advanced Functional Materials, 20 JUL 2012; DOI: 10.1002/adfm.201200951. ©2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

 

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 800 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 22 300 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.

or, 27.09.2012
Kontakt:

 

Monika Landgraf
Chief Communication Officer
Leiterin Gesamtkommunikation
Pressesprecherin
Tel: +49 721 608-41150
Fax: +49 721 608-43658
presse does-not-exist.kit edu

Das Foto kann in der höchsten uns vorliegenden Qualität angefordert werden unter:
presse does-not-exist.kit edu oder +49 721 608-41105.

Die Presseinformation steht auch als PDF-Datei zur Verfügung.