Home | deutsch  | Legals | Sitemap | Intranet | KIT
Portrait Monika Landgraf
Contact:
Monika Landgraf
Head of Corporate Communications, Chief Press Officer

Phone: +49 721 608-47414
Fax: +49 721 608-43658
presse(a)kit.edu

Subscription of Press Releases

RSS-Feed

Press Release 051/2016

Successful Laboratory Test of Photoswitchable Anti-tumor Agent

KIT Researchers Develop Oxygen-independent, Photoswitchable Molecule and Test It Successfully in the Lab for Its Effect against Tumors
2016_051_Photoschaltbarer_Tumorwirkstoff_bewaehrt_sich_im_Labor_72dpi
The GS-DProSw molecule in its inactive form (blue) can be activated by visible light (red) and “switched off” again by UV light. (Figure: KIT)

Photoswitchable agents might reduce side effects of a chemotherapy. So far, photodynamic therapies have been dependent on oxygen in the tissue. But hardly any oxygen exists in malignant, rapidly growing tumors. A group of researchers of KIT and the University of Kiev has now developed a photo-switchable molecule as a basis of an oxygen-independent method. Their successful laboratory tests on tumors are reported in the journal “Angewandte Chemie” (Applied Chemistry). DOI: 10.1002/ange.201600506.

 

Photodynamic therapy (PDT) in medicine usually uses a substance that reacts to light and converts the oxygen in the tissue into aggressive radicals. These reactive substances are toxic and damage the neighboring cells, such that e.g. tumors are decomposed. As a result of their quicker growth, however, many tumors have a high oxygen consumption. This reduces the concentration of oxygen available in the tissue, which may aggravate conventional PDT.

 

Researchers of KIT and the University of Kiev have now developed a new photo-switchable molecule for oxygen-independent PDT. The effect of the GS-DProSw molecule can be “switched off” by ultraviolet light prior to therapy. Only upon application is it “switched on” in the tumor tissue by visible light and damages the tumor tissue there. “The surrounding organs remain in the dark and are not affected by the active substance,” Anne S. Ulrich, Professor for Biochemistry and Director of the KIT Institute for Biological Interfaces, explains. “As a result, side effects are reduced significantly.”

 

For the first time, this new concept has now been tested on animal models. Once per day, the photoswitchable GS-DProSw molecule was administered. Then, the tumors were irradiated locally with visible light for a period of 20 minutes. After ten days of PDT treatment, the tumors were found to be far smaller than comparative groups not treated with light.

 

To initiate an oxygen-independent reaction in a PDT, the molecule applied has to be of cytotoxic nature. This means that it has to directly attack the tumor tissue irrespective of other reaction partners. A suitable molecule with cytotoxic properties against tumors is the biomolecule gramicidin S (GS), a natural antibiotic. To prevent it from damaging healthy tissue, the research team inserted a photo-switchable diaryl ethene segment into the ring structure. As a result, the GS-DProSw molecule can be switched between two states with the help of light: The agent can be administered in the inactive state and is activated at the desired location by specific irradiation with light. There, it attacks the surrounding tumor tissue and contrary to conventional PDT, it does not require any oxygen for this purpose.

 

“This first proof of functioning represents an important step in fundamental research for the development of anti-tumor agents,” Ulrich explains. “But we still have a far way to go: To reliably use this type of photoswitchable molecules for a photodynamic therapy of patients, numerous other studies have to be carried out in cooperation with our partners in Kiev.”  

 

Oleg Babii, Sergii Afonin, Liudmyla V. Garmanchuk, Viktoria V. Nikulina, Tetiana V. Nikolaienko, Olha V. Storozhuk, Dmytro V. Shelest, Olga I. Dasyukevich, Liudmyla I. Ostapchenko, Volodymyr Iurchenko, Sergey Zozulya, Anne S. Ulrich, and Igor V. Komarov: Direct photocontrol of peptidomimetics: an alternative to oxygen dependent photodynamic cancer therapy. Angewandte Chemie (2016). DOI: 10.1002/ange.201600506

 

Being „The Research University in the Helmholtz Association“, KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility and information. For this, about 9,300 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 26,000 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life.

sn, 06.04.2016

Press contact:

Kosta Schinarakis
Themenscout
Tel.: +49 721 608-41956
Fax: +49 721 608-43568
E-Mail:schinarakis@kit.edu
The photo in the best quality available to us may be requested by
presseWoh2∂kit edu or phone: +49 721 608-47414.

The press release is available as a PDF file.