Home | english  | Leichte Sprache | Impressum | Datenschutz | Sitemap | Intranet | KIT
Doris Wedlich
Bereichsleiterin
Prof. Dr. Doris Wedlich

Campus Süd
Dienstag, Donnerstag, Freitag
Geb. 10.11, Raum 114
Tel.: +49 721 608 43990

Campus Nord
Montag, Mittwoch
Geb. 433, Raum 109
Tel.: +49 721 608 28661

Mail: doris wedlichGtd0∂kit edu

Foto Fuhr
Sekretariat der Bereichsleitung
Sabine Fuhr

Campus Süd
Dienstag, Donnerstag, Freitag
Geb. 10.11 Raum 113
Tel.: +49 721 608 43991

Campus Nord
Montag, Mittwoch
Geb. 433, Raum 111
Tel.: +49 721 608 26081

Mail: sabine fuhrShv2∂kit edu

Bereichsreferentin
Bereichsreferentin Forschung und Strategie
Dr. Ruth Schwartländer

Campus Süd
Geb. 10.11, Raum 112
Tel.: +49 721 608 41061

Mail: ruth schwartlaenderIog1∂kit edu

 

Dr. Christian Röthig
Bereichsreferent Personal und Ressourcen
Dr. Christian Röthig

Campus Nord
Geb. 433, Raum 112
Tel.: +49 721 608 26068

Campus Süd
Geb. 10.11, Raum 112
Tel.: +49 721 608 41060

Mail: christian roethigLjw3∂kit edu

Andreas Martin
Sachbearbeiter
Andreas Martin

Campus Nord
Geb. 433, Raum 120
Tel.: +49 721 608 26283

Mail: andreas martinXic3∂kit edu

Sachbearbeiterin

Nadja Lodes

 

Campus Süd
Geb. 10.11, Raum 112
Tel.: +49 721 608 41061

Mail:
nadja lodesBrt5∂kit edu

Bereich I - Biologie, Chemie und Verfahrenstechnik

Der Bereich I bündelt Forschung, Lehre und Innovation in den wissenschaftlichen Disziplinen Biologie, Chemie und Verfahrenstechnik. Den Kern des Bereichs bilden zwanzig Institute des KIT, das Helmholtz-Programm BioGrenzflächen in Technologie und Medizin und die beiden KIT-Fakultäten für Chemie und Biowissenschaften und Chemieingenieurwesen und Verfahrenstechnik.

Seit 1. Januar 2014 nimmt Prof. Dr. Doris Wedlich die Funktion der Bereichsleiterin für den Bereich I wahr.

NEWS

Mehrfarbig fluoreszierendes Sicherheitsmerkmal im Computerdesign (links) und seine einzelnen Ebenen unter dem Laser-Scanning-Mikroskop (rechts). (Abbildung: Frederik Mayer, KIT)
Maßgeschneiderter Materialmix für dreidimensionale Mikro- und Nanostrukturen

Neues Verfahren verbindet 3D-Laserlithografie mit Mikrofluidik – Publikation in Science Advances.

Dreidimensionale Strukturen im Mikro- und Nanometermaßstab haben enormes Potenzial für zahlreiche Anwendungen. Ein effizientes und präzises Verfahren, solche Strukturen aus verschiedenen Materialien zu drucken, präsentieren Forschende des Karlsruher Instituts für Technologie (KIT) und der Carl Zeiss AG nun in der Zeitschrift Science Advances: Sie haben eine mikrofluidische Kammer in ein 3D-Laserlithografiegerät integriert. Mit diesem System fertigten sie mehrfarbig fluoreszierende Sicherheitsmerkmale, die Geldscheine, Dokumente und Markenprodukte vor Fälschung schützen können. (DOI: 10.1126/sciadv.aau9160)

 

Mehr Informationen zu "Maßgeschneiderter Materialmix für dreidimensionale Mikro- und Nanostrukturen "
Daten aus vielen Laboren nachhaltig und gemeinschaftlich nutzen, ist das Ziel des neuen Science Data Centers MoMaF (Foto: Laila Tkotz, KIT)
Molekül- und Materialforschung: Daten leicht teilen

„Science Data Center für Molekulare Materialforschung“ entwickelt Digitalisierungsbausteine für wissenschaftliche Daten – von Erfassung über Prozessierung bis zur öffentlichen Archivierung.

Das Internet bietet uns rund um die Uhr direkten Zugriff auf das Wissen der Welt. Eigene Projekte profitieren vom Know-how vieler Köpfe und können wiederum mit Interessierten geteilt werden. Gerade Forschende, deren Handwerk der Umgang mit Daten ist, streben einen freien Informationsfluss an. Für die in Laboren erzeugten Rohdaten ergeben sich jedoch einige Hürden beim Datenaustausch. Das „Science Data Center für Molekulare Materialforschung“ am Karlsruher Institut für Technologie (KIT) will das nun in Zusammenarbeit mit der Hochschule Karlsruhe und dem FIZ Karlsruhe ändern und erhält dafür eine Förderung von 2,5 Millionen Euro vom Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg (MWK).

Mehr Information zu "Molekül- und Materialforschung: Daten leicht teilen"
In den Versuchsanlagen des KArlsruhe Liquid metal LAboratory (KALLA) wird die Thermofluiddynamik von Metallschmelzen erforscht. (Foto: Karsten Litfin, KIT)
Flüssigmetallforschung: Neue Lösungen für die Energiewende

Mit Methanspaltung zu sauberem Wasserstoff

Erdgas wird oft als eine saubere Alternative zur Kohle betrachtet. Doch auch das hauptsächlich aus Methan bestehende fossile Erdgas erzeugt bei der Verbrennung noch klimaschädliche CO2-Emissionen. Wissenschaftlerinnen und Wissenschaftlern des KIT sowie des Institute for Advanced Sustainability Studies (IASS) in Potsdam ist es aber gelungen, Erdgas klimaneutral nutzbar zu machen: „Wir nutzen die Flüssigmetalltechnologie, um das Methan in gasförmigen Wasserstoff und festen, elementaren Kohlenstoff zu trennen“, sagt Professor Thomas Wetzel vom Institut für Thermische Verfahrenstechnik des KIT. Bei dem Pyrolyseverfahren wird das Methan von unten in eine auf bis zu 1 200 Grad Celsius gehaltene Säule aus flüssigem Zinn kontinuierlich eingebracht und steigt darin als Blasenschwarm auf. Dabei erreicht das Gas in den Blasen die für die Spaltung notwendige Temperatur und zerfällt. An der Oberfläche des flüssigen Zinns entweicht dann der gasförmige Wasserstoff und der pulverförmige Kohlenstoff kann entfernt werden. „Im Labormaßstab konnten wir den kontinuierlichen Betrieb bei einer Umwandlungsrate von bis zu 78 Prozent nachweisen“, so Wetzel.

Das neue Verfahren hat den Innovationspreis der Deutschen Gaswirtschaft 2018 gewonnen und wird zurzeit mit Partnern aus der Industrie vom Labor in die Anwendung überführt: https://www.kit.edu/kit/pi_2018_151_innovationspreis-fur-klimafreundliche-methanspaltung.php 

 
Das richtige Material macht’s: Die Objekte aus dem 3D-Drucker sind auch nach dem Druck noch beweglich und können etwa durch Temperaturänderung stimuliert werden. (Grafik: Marc Hippler, KIT)
Bewegliche Mikrostrukturen aus dem Drucker

Wissenschaftler des KIT entwickeln Methode für dynamischen 3D-Druck – Mikrostrukturen lassen sich durch Licht und Temperatur bewegen.

Mit laserbasiertem 3D-Druck lassen sich heute schon beliebige Strukturen im Mikrometermaßstab herstellen. Für viele Anwendungen, insbesondere in der Biomedizin, wäre es jedoch vorteilhaft, wenn die gedruckten Objekte nicht starr, sondern schaltbar wären. Wissenschaftlerinnen und Wissenschaftler des Karlsruher Instituts für Technologie (KIT) konnten nun Mikrostrukturen drucken, die durch den Einfluss von Temperatur oder Licht ihre Form verändern. Die Ergebnisse veröffentlichten sie in der Fachzeitschrift Nature Communications. (DOI: 10.1038/s41467-018-08175-w)

 

Mehr Informationen zu "Bewegliche Mikrostrukturen aus dem Drucker"
Forschende am HIU montieren Magnesiumbatterien unter Argon-Schutzgas. (Foto: Laila Tkotz/KIT)
Magnesium-Batterien: Aufbruch ins Post-Lithium-Zeitalter

Im europäischen Forschungsprojekt E-MAGIC entwickeln KIT und Helmholtz-Institut Ulm (HIU) gemeinsam mit Kooperationspartnern eine magnesiumbasierte Energiespeichertechnologie.

Leistungsfähiger, günstiger und sicherer als Lithium-Ionen-Batterien: Das erhoffen sich Wissenschaftlerinnen und Wissenschaftler des Karlsruher Instituts für Technologie (KIT) sowie ihre Kooperationspartner von neuartigen Magnesium-Batterien, die sie im Forschungsprojekt E-MAGIC entwickeln wollen. Das von der Europäischen Union (EU) mit über 6,5 Millionen Euro finanzierte Forschungsprojekt bündelt relevante Aktivitäten verschiedener europäischer Wissenschaftsinstitutionen.

 

Mehr Informationen zu "Magnesium-Batterien: Aufbruch ins Post-Lithium-Zeitalter"
Die INERATEC-Geschäftsführer Paolo Piermartini und Tim Böltken sowie Peter Pfeifer vom KIT mit Juror Hans-Jörg Vetter, Aufsichtsratschef von Herrenknecht (Foto: Wolfgang List)
INERATEC gewinnt ersten Lothar-Späth-Award

Spin-off des KIT erhält den neuen Innovationspreis für eine dezentrale chemische Reaktortechnologie im Containerformat.

Kraftstoffe mithilfe von erneuerbaren Energiequellen preiswert und klimafreundlich herstellen – das ist die Mission des Start-ups INERATEC, einer Ausgründung aus dem Karlsruher Institut für Technologie (KIT). Eigentlich sind bei der Produktion von synthetischen Kraftstoffen wie Benzin riesige Anlagen nötig. INERATEC baut chemische Reaktoren, die so kompakt sind, dass die fertig montierte Anlage in einen Schiffscontainer passt und überall eingesetzt werden kann. Für diese Idee hat das junge Unternehmen nun den erstmals vergebenen Lothar-Späth-Award erhalten.

Mehr Informationen zu "INERATEC gewinnt ersten Lothar-Späth-Award"
 
.