Home | deutsch  | Legals | Sitemap | Intranet | KIT
Doris Wedlich
Head of Division
Prof. Dr. Doris Wedlich

Campus South
Tuesday, Thursday, Friday
Bldg.    10.11, Room 114
Phone: +49 721 608 43990

Campus North
Monday, Wednesday
Bldg.    433, Room 109
Phone: +49 721 608 28661

 

Mail doris wedlichEdf9∂kit edu

Foto S. Fuhr
Secretary
Sabine Fuhr

Campus South
Tuesday, Thursday, Friday
Bldg.    10.11, Room 113
Phone: +49 721 608 43991

Campus North
Monday, Wednesday
Bldg.    433, Room 111
Phone: +49 721 608 26081

Mail: sabine fuhrPlo3∂kit edu


Ruth Schwartländer
Manager Processes
Dr. Ruth Schwartländer

Campus South
Bldg.    10.11, Room 112
Phone: +49 721 608 41061

Mail: ruth schwartlaenderNoe3∂kit edu

 

Dr. Christian Röthig
Manager Resources
Dr. Christian Röthig

Campus North,
Bldg.    433, Room 112
Phone: +49 721 608 26068

Campus South
Bldg.    10.11, Room 112
Phone: +49 721 608 41060

Mail: christian roethigQmj4∂kit edu

Andreas Martin
Officer
Andreas Martin

Campus North
Bldg.    433, Room 120
Phone: +49 721 608 26283

Mail: andreas martinQde5∂kit edu

Officer

Nadja Lodes

 

Campus South
Bldg.    10.11, Room 112
Phone: +49 721 608 41061

Mail: nadja lodesOsa1∂kit edu

Division I - Biology, Chemistry, and Process Engineering

Division I comprises twenty KIT institutes, the KIT Department of Chemistry and Biosciences and the KIT Department of Chemical and Process Engineering as well as the Helmholtz Programme BioInterfaces.

 

Since January 1, 2014, Professor Dr. Doris Wedlich has been Head of Division I.

 

NEWS

Australian Laureate Fellow 2017: Professor Christopher Barner-Kowollik (Foto: Irina Westermann)
Mit Licht zu maßgeschneiderten High-Tech-Materialien

Australischer Forschungsrat zeichnet Christopher Barner-Kowollik mit einem Australian Laureate Fellowship aus – mehr als drei Millionen Australische Dollar für Verfahren zur präzisen Programmierung von Materialeigenschaften

Kratzer im Autolack per Laser reparieren oder empfindliche elektronische Bauteile mit Licht flexibler oder härter machen: An solchen Lösungen arbeitet Professor Christopher Barner-Kowollik am Karlsruher Institut für Technologie (KIT) und der Queensland University of Technology (QUT) in Brisbane, Australien. Wie sich Beschichtungen und Materialien mit monochromatischem Licht aus Lasern für unterschiedliche Anwendungen maßschneidern lassen, untersucht er nun auch in einem Projekt, das der Australische Forschungsrat mit mehr als drei Millionen Australischen Dollar fördert (mehr als zwei Millionen Euro).

Mehr Informationen zu "Mit Licht zu maßgeschneiderten High-Tech-Materialien"

Offizielle Aufnahme: Willem Klopper (links) und Ole M. Sejersted (rechts), Präsident der Wissenschaftsakademie (Foto: Thomas Barstad Eckhoff, The Norwegian Academy of Science and Letters)
Willem Klopper in norwegische Wissenschaftsakademie gewählt

Die Akademie ehrt den KIT-Dekan für seine bedeutenden Beiträge auf dem Gebiet der Quantenchemie.

Die Norwegische Akademie der Wissenschaften  in Oslo vereint in ihrer historisch-philosophischen sowie ihrer mathematisch-naturwissenschaftlichen Abteilung rund 900 Wissenschaftlerinnen und Wissenschaftler aus dem In- und Ausland. Neue Mitglieder werden aufgrund ihrer hervorragenden wissenschaftlichen Leistungen auf Vorschlag von Akademiemitgliedern berufen. Professor Willem Klopper  engagiert sich mit seinem Fachwissen künftig in der Gruppe "Chemie" der mathematisch-naturwissenschaftlichen Abteilung.

Willem Klopper, Dekan der KIT-Fakultät für Chemie und Biowissenschaften, ist seit 2002 Professor für Theoretische Chemie am KIT. Als Quantenchemiker hat er bedeutende Beiträge zur Entwicklung quantenmechanischer Verfahren zur genauen Berechnung molekularer elektronischer Wellenfunktionen geleistet.  An der Universität Oslo hatte er eine Gastprofessur inne, ein Forschungsaufenthalt im Centre for Advanced Study in Oslo ist im kommenden Wintersemester geplant.

io, 16.05.2017

.
 
Fluids self-arrange in smallest droplets on a DMA. (Photo: KIT)
Water Droplets as Miniaturized Test Tubes

New Laboratory Technology Makes Search for Active Substances Less Expensive – Water Droplets Self-arrange and Pipetting Robots Are No Longer Required.

Modern laboratory technology cannot only help develop new medicine, but also make quicker diagnoses of higher precision. Scientists of Karlsruhe Institute of Technology (KIT) have now developed laboratory equipment that facilitates the search for active substances and the examination of cell samples. Thus, costs are reduced by a factor of up to one hundred. 

More infromation about "Water Droplets as Miniaturized Test Tubes"
3-dimensional microstructures can be written using a laser, erased, and rewritten. (Photo: KIT)
Erasable Ink for 3D Printing

Laser-written Three-dimensional Microstructures Can Be Erased and Rewritten, if Desired – Very Important Paper Publication in Angewandte Chemie

3D printing by direct laser writing produces micrometer-sized structures with precisely defined properties. Researchers of Karlsruhe Institute of Technology (KIT) have now developed a method to erase the ink used for 3D printing. In this way, the small structures of up to 100 nm in size can be erased and rewritten repeatedly. One nanometer corresponds to one millionth of a millimeter. This development opens up many new applications of 3D fabrication in biology or materials sciences, for instance.

More information about "Erasable Ink for 3D Printing"
Professor Holger Puchta is awarded his second ERC Advanced Grant. (Photo: Manuel Balzer, KIT)
Plants with Custom-fit Combined Traits

For the second time in succession, molecular biologist Professor Holger Puchta of Karlsruhe Institute of Technology (KIT) is awarded the renowned ERC Advanced Grant by the European Research Council for his research using molecular scissors in plants. The now funded CRISBREED project covers the simultaneous use of several molecular scissors, so-called CRISPR/Cas systems, to specifically modify genetic information and newly combine certain traits in crops.  

More informationen about "Plants with Custom-fit Combined Traits"
 
The metal-organic framework is set up like a sandwich (a). The molecular textile layer is woven in an active layer that is embedded between so-called sacrificial layers (b). (Image: KIT)
Metal-organic Frameworks Used as Looms

Researchers of Karlsruhe Institute of Technology (KIT) have made major progress in the production of two-dimensional polymer-based materials. To produce cloths from monomolecular threads, the scientists used SURMOFs, i.e. surface-mounted metal-organic frameworks, developed by KIT. They inserted four-armed monomers, i.e. smaller molecular building blocks, into some SURMOF layers. Cross-linking of the monomers then resulted in textiles consisting of interwoven polymer threads. This work is now presented in Nature Communications. (DOI: 10.1038/ncomms14442)

More information about "Metal-organic Frameworks Used as Looms"
Severely hyperbranched vascular network surrounding the spinal cord (red dotted box) of zebrafish embryo – blood vessels in white (Bild: le Noble/KIT)
Neurons Modulate the Growth of Blood Vessels

First Hampered, Then Released: Nerve cells regulate the density of blood vessel network dynamical-ly by fine modulation of signaling molecules.

A team of researchers at Karlsruhe Institute of Technology (KIT) shake at the foundations of a dogma of cell biology. By detailed series of experiments, they proved that blood vessel growth is modulated by neurons and not, as assumed so far, through a control mechanism of the vessel cells among each other. The results are groundbreaking for research into and treatment of vascular diseases, tumors, and neurodegenerative diseases. The study will be published in the prestigious journal Nature Communications.

 

More information about "Neurons modulate the Growth of Blood Vessels"
Eine MOF-Membran mit eingebauten Fotoschaltern trennt Moleküle. Über die Lichteinstrahlung lässt sich der Trennfaktor stufenlos einstellen. (Abbildung: Alexander Knebel/Universität Hannover und Lars Heinke/KIT)
Light Opens and Closes Windows in Membranes

Metal-organic Frameworks (MOFs) with Photoswitchable Azobenzene Molecules Enable Tunable Separation of Substance Mixtures – Publication in Nature Communications

Researchers of Karlsruhe Institute of Technology (KIT) and Universität Hannover developed novel membranes, whose selectivity can be switched dynamically with the help of light. For this purpose, azobenzene molecules were integrated into membranes made of metal-organic frameworks (MOFs). Depending on the irradiation wavelength, these azobenzene units in the MOFs adopt a stretched or angular form. In this way, it is possible to dynamically adjust the permeability of the membrane and the separation factor of gases or liquids. The results are reported in Nature Communications. (DOI:10.1038/ncomms13872) 

More information about "Light Opens and Closes Windows..."