3D Microprinting: Security for Products, Passports, and Money


Counterfeits and product piracy can be prevented by security features, such as printed 3D microstructures, on products or packagings. (Photo: Frederik Mayer/KIT)

Security features are to protect banknotes, documents, and branded products against counterfeiting. Losses caused by product forgery and counterfeiting may be enormous. According to the German Engineering Association, the damage caused in 2016 in its branch alone amounted to EUR 7.3 billion. In the Advanced Materials Technologies journal, researchers of Karlsruhe Institute of Technology (KIT) and the ZEISS company now propose to use printed 3D microstructures instead of 2D structures, such as holograms, to improve counterfeit protection.

"Today, optical security features, such as holograms, are frequently based on two-dimensional microstructures," says Professor Martin Wegener, expert for 3D printing of microstructures at the Institute of Nanotechnology of KIT. "By using 3D-printed fluorescent microstructures, counterfeit protection can be increased." The new security features have a side length of about 100 µm and are barely visible with the eye or a conventional microscope. For their production and application, Wegener and his team have developed an innovative method.
that covers all processes from microstructure fabrication to the readout of information.

The microstructures consist of a 3D cross-grid scaffold and dots that fluoresce in different colors and can be arranged variably in three dimensions within this grid. To produce and print such microstructures, the experts use a rapid and precise laser lithography device developed and commercialized by the Nanoscribe company, a spinoff of KIT. It enables highly precise manufacture of voluminous structures of a few millimeters edge length or of microstructured surfaces of several cm² in dimension.

The special 3D printer produces the structures layer by layer from non-fluorescent and two fluorescent photoresists. A laser beam very precisely passes certain points of the liquid photoresist. The material is exposed and hardened at the focus point of the laser beam. The resulting filigree structure is then embedded in a transparent polymer in order to protect it against damage.

“Security features produced in this way are not only of individual character, but also very complex in manufacture. This makes life difficult to forgers,” says Frederik Mayer of the Institute of Nanotechnology of KIT. The new process can be extended easily and is extremely versatile. The 3D features may be applied as an embedded foil in security tags to protect pharmaceuticals, car spare parts, or mobile accumulators against counterfeiting. They may also be integrated into the transparent windows of bank notes. For later authentication checks at the supermarket checkout or in the production hall, special readout instruments are required to detect the fluorescent 3D structures.

The research results are reported by the scientists in Advanced Materials Technologies:


Being “The Research University in the Helmholtz Association,” KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility and information. For this, about 9,300 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 26,000 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at
KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life.

Since 2010, the KIT has been certified as a family-friendly university.


The photo in the best quality available to us may be downloaded under www.kit.edu or requested by mail to presse@kit.edu or phone +49 721 608-47414. The photo may be used in the context given above exclusively.