New Printing Process Makes Three-dimensional Objects Glow

Engineers of KIT and Franz Binder GmbH Have Succeeded in Coating Curved Surfaces with Electroluminescent Layers

Bent and flexible surfaces of various materials, such as paper and plastic, can be provided with a coating to make them glow. (Photo: S. Walter/Binder Group)

Conventional electroluminescent (EL) foils can be bent up to a certain degree only and can be applied easily onto flat surfaces. The new process developed by Karlsruhe Institute of Technology (KIT) in cooperation with the company of Franz Binder GmbH & Co. now allows for the direct printing of electroluminescent layers onto three-dimensional components. Such EL components might be used to enhance safety in buildings in case of power failures. Other potential applications are displays and watches or the creative design of rooms. The development project was funded with EUR 125,000 by the Deutsche Bundesstiftung Umwelt (German Foundation for the Environment).

“By means of the innovative production process we developed together with our industry partner, any type of three-dimensional object can be provided with electroluminescent coatings at low costs,” Dr.-Ing. Rainer Kling of the Light Technology Institute of KIT says. Usually, the luminescent material is located between two plastic layers in EL carrier foils. By means of the new printing process, however, the electroluminescent layers are directly printed onto the object without any intermediate carrier. In this way, convex and con-
cave surfaces of various materials, such as paper or plastic, can be made glow.

The different components of the coating, including the electroluminescent and the electrically conductive materials, are applied by a novel pad printing process. The pad printing machine is equipped with an elastic rubber pad that is easily deformable and, hence, excellently suited for the coating of curved surfaces.

“In this way, it is possible to provide surfaces and even spheres with homogeneous coatings at low costs,” says engineer Elodie Chardin, who works on this research project. “Homogeneity of the coating of about one tenth of a millimeter in thickness was one of the challenges of this project,” says the executive engineer of the industry partner, Elisabeth Warsitz. The process requires a few production steps only and, hence, is characterized by a low consumption of resources. By using various luminescent substances, various colors may be applied to the same surface.

The research and development project of KIT in cooperation with the Binder Connector Group, headquartered in the German town of Neckarsulm, took about two years and was funded with EUR 125,000 by the Deutsche Bundesstiftung Umwelt (German Foundation for the Environment). The foundation funds projects for the protection of the environment, with one project partner being a small or medium-sized company. After the successful development of the prototype printing process for electroluminescent layers, the Light Technology Institute of the KIT Department of Electrical Engineering and Information Technology plans further research projects for the optimization of this innovative production process of electroluminescent coatings.

Video on the production of glowing paper:
https://www.youtube.com/watch?v=h8xQfvOWBuA

Karlsruhe Institute of Technology (KIT) is a public corporation pursuing the tasks of a Baden-Wuerttemberg state university and of a national research center of the Helmholtz Association. The KIT mission combines the three core tasks of research, higher education, and innovation. With about 9,400 employees and 24,500 students, KIT is one of the big institutions of research and higher education in natural sciences and engineering in Europe.
Since 2010, the KIT has been certified as a family-friendly university.

This press release is available on the internet at www.kit.edu.

The photo of printing quality may be downloaded under www.kit.edu or requested by mail to presse@kit.edu or phone +49 721 608-47414. The photo may be used in the context given above exclusively.