Magnetischer Kohlenstoff mit winzigen Mustern

Mikro- und Nanostrukturierung per Lithographie – Potenzial für Mikro- und Nanoelektromechanische Systeme sowie bildgebende Techniken – Publikation in Journal of Applied Physics
Pyrolytischer magnetischer Kohlenstoff (PMC): Das Modell zeigt die für die magnetischen Eigenschaften verantwortlichen ungepaarten Elektronenspins (rot). (Abbildung: Swati Sharma)

Forschern am KIT ist es erstmals gelungen, mikro- und nanostrukturierten magnetischen Kohlenstoff herzustellen. Gemeinsam mit Wissenschaftlern an der Universität Freiburg versahen sie Polymere per Lithographie mit winzig kleinen Strukturen und wandelten sie über Pyrolyse um. So erhielten sie pyrolytischen magnetischen Kohlenstoff (PMC). Dieser ist kostengünstig, lässt sich bei Raumtemperatur nutzen und eignet sich für Mikro und Nanoelektromechanische Systeme (MEMS und NEMS). Im Journal of Applied Physics stellen die Forscher PMC vor.

Reiner Kohlenstoff ist normalerweise nicht magnetisch. Daher konzentrierte sich die Nanotechnologie beim Einsatz von Kohlenstoff bisher auf dessen Fähigkeit zum Elektronentransport. Kohlenstoff mit magnetischen Eigenschaften wurde zwar bereits vereinzelt hergestellt, jedoch ohne die Produktion auf die Mikro- und Nanoskala zu übertragen. Forschern um Professor Jan G. Korvink am Institut für Mikrostrukturtechnik (IMT) des KIT ist es zusammen mit Wissenschaftlern um Professor Stefan Weber am Institut für Physikalische Chemie der Universität Freiburg nun erstmals gelungen, mikro- und nanostrukturierten magnetischen Kohlenstoff herzustellen. Der von ihnen gefertigte pyrolytische magnetische Kohlenstoff (PMC) ist kostengünstig, bleibt anders als die meisten magnetischen Materialien auch bei extrem hohen Temperaturen stabil, erfordert keine speziellen Lagerungsbedingungen, lässt sich bei Raumtemperatur nutzen und ist mit den meisten skalierbaren lithographischen Techniken kompatibel.

Die Herstellung von PMC ist das Ergebnis fachübergreifender Zusammenarbeit: Neben Dr. Swati Sharma, die sich schwerpunktmäßig mit kohlenstoffbasierten MEMS befasst, waren der Physiker Dr. Lorenzo Bordonali und der Chemiker Dr. Neil McKinnon aus der Gruppe von Professor Jan G. Korvink, Experte für Magnetresonanztechnologie, am KIT sowie der Materialwissenschaftler Arpad M. Rostas aus der Gruppe von Professor Stefan Weber an der Universität Freiburg daran beteiligt. Finanziert wurde die Arbeit im Rahmen des EU-Projekts NMCEL unter der Leitung von Professor Jan G. Korvink.

Weitere Informationen in der Pressemitteilung 183/2016.


or, 28.12.2016