Methane-based Fuels for the Transport and Energy Sectors

MethQuest focuses on using methane from renewable sources for various applications. (Graphics: MethQuest)

The lead project “Methane from Renewable Sources in Mobile and Stationary Applications” (MethQuest) launched on September 14, 2018 is aimed at developing environmentally compatible, affordable, and feasible approaches to a successful energy transition. The project is funded with EUR 19 million by the Federal Ministry for Economic Affairs and Energy (BMWi). Responsibility for joint project coordination has been assigned to Rolls-Royce Power Systems and the DVGW Research Centre at the Engler-Bunte Institute of Karlsruhe Institute of Technology (KIT). KIT researchers participate in two of the six joint projects.

Within the MethQuest lead project, technologies are to be developed and analyzed that will enable methane-based fuels from renewables to be used in mobile and stationary applications and subsequently launched on the market. While the use of gas is widespread, particularly for heating purposes, its potential for passenger, freight, and maritime transport has hardly been developed to date.
“For a successful energy transition, it is absolutely essential that the energy and transport sectors are coupled and looked at as a whole. At the same time, methane-based fuels produced using electric power that is generated from renewable energy sources (power-to-gas) will be an important factor. They will enable greenhouse gas emissions to be significantly reduced, which will help to achieve our climate protection goals. Further development of technologies for the energy-efficient use of these fuels is an integral part of the MethQuest lead project,” said Norbert Brackmann, the federal government’s coordinator for the maritime industry when the project was launched officially.

MethQuest pursues a sector-overlapping approach. “The six joint projects will push innovation in a number of areas ranging from the development of novel solutions to produce gas from renewable energy sources to novel engine concepts for private cars, to stationary applications and ship drives, to the design of microgrids for both inland and seaports,” says Dr. Frank Graf, Head of the Gas Technology Division of the DVGW Research Centre at KIT’s Engler-Bunte Institute. Together with Andreas Schell, CEO of Rolls-Royce Power Systems, he accepted the official funding notification on behalf of the 27 partners from industry and research.

The project has a total value of EUR 32 million. Total funding by the Federal Ministry for Economic Affairs and Energy amounts to EUR 19 million. The partners will collaborate in six joint projects ranging from methane recovery to new engine concepts for ships, to cogeneration plants and cars, to sector coupling using microgrid solutions for both inland and seaports, to systems analysis assessment.

KIT will participate in two “MethQuest” projects:

Among the partners of the MethFuel joint project that focuses on novel process technologies for the supply of hydrogen and carbon dioxide and for catalytic methanation are the Chemical Technology Group of the Institute for Chemical Technology and Polymer Chemistry (ITCP) and the Fuel Chemistry and Technology Group of the Engler-Bunte Institute (EBI ceb) as well as the KIT-associated European Institute for Energy Research (EIFER). In their joint laboratory ENER-MAT (ENERgy MATerials), ITCP and EIFER will study how the components of power-to-gas plants run with power from renewable energy sources cope with strongly fluctuating power supply. Particular attention will be paid to the optimal use of solid electrolysis cells under the highly dynamic conditions of power-to-gas applications. In addition, EBI ceb will study three-phase methanation (3PM) that rapidly
reacts to power fluctuations. This enables direct coupling of methana-
tion to hydrogen production without interim storage and, hence, sig-
nificant reduction of investment and operation costs.

The Combustion Technology Group of the Engler-Bunte Institute (EBI vbt) participates in the MethCar project that covers the development of novel gas engines for cars. In a specifically adapted car engine, the special properties of compressed methane produced from renewable sources are expected to result in a very high efficiency. Moreover, methane engines are associated with much smaller particle emis-
sions than diesel and gasoline engines. However, sizes of the parti-
cles produced are smaller than 100 nm in diameter. To prevent for-
mation of these particles under certain operation conditions, pro-
cesses are modeled and described by EBI vbt. This will help to reli-
bly exclude particle formation in subsequent MethCar combustion process design and engine calibration.

The other joint projects will be MethPower, MethMare, MethGrid, and MethSys. MethPower will cover novel engine concepts for stationary applications. MethMare will focus on two concepts for dynamically op-
erable high-speed gas engines for ships. MethGrid will concentrate on solutions on the production, grid, and consumption sides for the design of microgrids for inland and seaports. MethSys will cover sys-
tems analyses of the costs, impact on climate, and feasibility of the new technologies.

The Partners of MethQuest Lead Project:
AREVA H2Gen GmbH, Continental Automotive GmbH, DBI – Gas-
technologisches Institut gGmbH Freiberg, DVGW Research Centre at the Engler-Bunte Institute of Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry (ITCP) of Karlsruhe Institute of Technology (KIT), Engler-Bunte Institute (EBI) of Karlsruhe Institute of Technology (KIT), Karlsruhe Institute of Tech-
nologies and Image Exploitation (IOSB), Fraunhofer Institute for Solar Energy Systems (ISE), Fraunhofer Institute for Systems and Innova-
tion Research (ISI), Infraserv GmbH & Co. Höchst KG, Institut für Luft-
Europe GmbH, RWTH Aachen University, Schaeffler Technologies AG & Co. KG, Stadtwerke Karlsruhe GmbH, terranets bw GmbH, Technische Universität Berlin, and Technical University of Munich.

Background: Power-to-Gas Processes

In so-called power-to-gas processes using electric power from renewable energy sources, environmentally friendly gas can be generated and stored easily for later use as and when required. Methane from power-to-gas processes offers numerous benefits compared to other power-to-X options, production processes are less complex and reach far higher levels of efficiency. This has a positive impact on production costs. Moreover, fossil natural gas can be replaced easily and successively by compressed or liquid methane from renewable energy sources. Existing gas networks and applications can still be used without the need for expensive and time-consuming modifications.

Firstly, gas-based technologies are well developed and used in millions of applications. Secondly, there is an extensive and high-capacity infrastructure of existing natural gas networks and storage facilities available, with which fluctuations in the supply of renewable energies can be compensated, large amounts of energy stored, and energy consumption peaks balanced. Vehicles powered with gases from renewables, as a supplement to e-mobility, can make a major contribution to the energy transition.

DVGW Research Centre at KIT’s Engler-Bunte Institute

The DVGW Research Centre at the Engler-Bunte Institute (EBI) of Karlsruhe Institute of Technology (KIT) is a joint, independent institution of the DVGW – German Technical and Scientific Association for Gas and Water, Bonn – and KIT. It is operated by the EBI groups of Fuel Chemistry and Technology (EBI ceb), Combustion Technology (EBI vbt), and Water Chemistry and Technology (EBI wct) and consists of the divisions of Gas Technology, Testing Laboratory Gas, and Water Technology.

More about the KIT Energy Center: http://www.energy.kit.edu

Being “The Research University in the Helmholtz Association,” KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility and information.
For this, about 9,300 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 25,500 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life.

The photo in the best quality available to us may be downloaded under www.kit.edu or requested by mail to presse@kit.edu or phone +49 721 608-21105. The photo may be used in the context given above exclusively.