Presseinformation 081/2020

Streckbank für Zellen

Eine raffinierte, wenige Mikrometer kleine Vorrichtung macht es möglich, die Reaktion einzelner biologischer Zellen auf mechanischen Stress zu untersuchen – Publikation in Science Advances
Elektronenmikroskopische Aufnahme des „leeren“ Gerüsts (ohne Hydrogel), mit dessen Hilfe ein internationales Forschungsteam einzelne Zellen deformiert hat. (Abbildung: Marc Hippler, KIT)
Elektronenmikroskopische Aufnahme des „leeren“ Gerüsts (ohne Hydrogel), mit dessen Hilfe ein internationales Forschungsteam einzelne Zellen deformiert hat. (Abbildung: Marc Hippler, KIT)

Das Verhalten von Zellen wird durch ihre Umgebung gesteuert. Neben biologischen Faktoren und chemischen Substanzen geraten auch physikalische Kräfte wie Druck oder Zug in den Fokus. Eine Methode, mit der sich der Einfluss äußerer Kräfte auf einzelne Zellen analysieren lässt, haben Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) und der Universität Heidelberg entwickelt. Mit einem 3D-Druckverfahren stellen sie Mikro-Gerüste her, auf deren jeweils vier Pfeilern sich eine Zelle ansiedelt. Auf ein äußeres Signal hin schwillt ein Hydrogel im Inneren des Gerüstes an und drückt die Pfeiler auseinander: Die Zelle muss sich „strecken“. Die Arbeit ist Teil des Exzellenzclusters „3D Matter Made to Order“ (3DMM2O). Über ihre Ergebnisse berichten die Forschenden in Science Advances (DOI: 10.1126/sciadv.abc2648).

Viele zelluläre biologische Prozesse, wie etwa die Wundheilung oder die Entwicklung von Gewebe, werden stark von den Eigenschaften ihrer Umgebung beeinflusst. Zellen reagieren beispielsweise auf biologische Faktoren oder chemische Stoffe. Doch zunehmend geraten auch einwirkende physikalische Kräfte in den Blickpunkt der Forschung: Wie genau stellen sich die Zellen auf sie ein?

Das Team des Exzellenzclusters 3DMM2O hat im deutsch-japanischen Universitätskonsortium HeKKSaGOn und in Kooperation mit australischen Wissenschaftlerinnen und Wissenschaftlern einen besonders raffinierten Weg beschritten, um sich dieser Frage zu nähern. Für die Herstellung ihrer Zell-Streckbänke nutzten sie das „direkte Laserschreiben“, ein spezielles 3D-Druckverfahren: Dabei wird ein Laserstrahl computergesteuert in eine spezielle flüssige Druckertinte fokussiert. Deren Moleküle reagieren nur an den beleuchteten Stellen und bilden dort ein festes Material. Alle anderen Bereiche bleiben flüssig und können weggewaschen werden. „Dieses Verfahren ist bei uns im Exzellenzcluster etabliert, um dreidimensionale Strukturen aufzubauen – auf der Mikrometerskala und darunter“, erläutert Marc Hippler vom Institut für Angewandte Physik des KIT, Erstautor der Veröffentlichung.

Im aktuellen Fall verwendeten die Forscherinnen und Forscher drei verschiedene Druckertinten: Eine Tinte aus protein-abweisendem Material, mit der sie das eigentliche Mikrogerüst herstellten. Mit einer zweiten Tinte aus protein-anziehendem Material fertigten sie anschließend vier Balken, die jeweils mit einem der Gerüstpfeiler verbunden sind. Auf diesen vier Balken verankert sich die Zelle. Eine dritte Tinte ist der eigentliche Clou: Die Wissenschaftler „drucken“ mit ihr eine Masse im Inneren des Gerüstes. Geben sie dann eine spezielle Flüssigkeit zu, dehnt sich die Hydrogel-Masse aus. Sie entwickelt so eine Kraft, die ausreicht, um die Pfeiler mitsamt den Balken zu bewegen – und somit die Zelle auf den Balken zu strecken.

Das Hydrogel (gelb) schwillt an und drückt das Mikro-Gerüst (grau) mitsamt den zell-anziehenden Balken (orange) auseinander. Die Zelle (grün) wird dadurch deformiert. (Abbildung: Marc Hippler, KIT)

Das Hydrogel (gelb) schwillt an und drückt das Mikro-Gerüst (grau) mitsamt den zell-anziehenden Balken (orange) auseinander. Die Zelle (grün) wird dadurch deformiert. (Abbildung: Marc Hippler, KIT)

Zellen wirken Deformation aktiv entgegen

Die Wissenschaftlerinnen und Wissenschaftler des Exzellenzclusters haben zwei ganz verschiedene Zellarten auf ihre Mikro-Streckbank gelegt: humane Knochentumor-Zellen und embryonale Mäusezellen. Sie stellten fest, dass die Zellen den äußeren Kräften mit Motorproteinen aktiv entgegenwirken und ihre Zugkräfte so stark erhöhen. Wird die externe Streckung aufgehoben, so entspannen sich die Zellen wieder und kehren zu ihrem Ausgangszustand zurück. „Dieses Verhalten zeigt eindrucksvoll die Anpassungsfähigkeit an eine dynamische Umgebung. Wenn sich die Zellen nicht mehr erholen würden, wären sie nicht mehr in der Lage, ihre ursprüngliche Funktion – beispielsweise den Wundverschluss – zu erfüllen“, so Professor Martin Bastmeyer vom Zoologischen Institut des KIT.

Wie das Team weiter herausfand, spielt bei der Reaktion der Zellen auf die mechanische Stimulation ein Protein namens NM2A (NonMuscle Myosin 2A) eine entscheidende Rolle: Genetisch veränderte Knochentumor-Zellen, die NM2A nicht bilden können, waren kaum noch in der Lage, der äußeren Deformation entgegenzuwirken.

Lichtmikroskopische Aufnahmen von gefärbten embryonalen Mauszellen im normalen (links) und im gestreckten Zustand (rechts). Die roten Pfeile verdeutlichen die einwirkenden Kräfte. (Abbildung: Marc Hippler, KIT)Lichtmikroskopische Aufnahmen von gefärbten embryonalen Mauszellen im normalen (links) und im gestreckten Zustand (rechts). Die roten Pfeile verdeutlichen die einwirkenden Kräfte. (Abbildung: Marc Hippler, KIT)

Lichtmikroskopische Aufnahmen von gefärbten embryonalen Mauszellen im normalen (links) und im gestreckten Zustand (rechts). Die roten Pfeile verdeutlichen die einwirkenden Kräfte. (Abbildung: Marc Hippler, KIT)

An den aktuellen Arbeiten im Exzellenzcluster haben Heidelberger Forschende aus der biophysikalischen Chemie und Karlsruher Forschende der Physik und der Zell- und Neurobiologie mitgewirkt. In dem deutsch-japanischen Universitätskonsortium HeKKSaGOn haben sich unter anderem die Universität Heidelberg, das Karlsruher Institut für Technologie und die Universität Osaka zusammengeschlossen.

 

Exzellenzcluster 3D Matter Made to Order

Im Exzellenzcluster 3D Matter Made to Order (3DMM2O) forschen Wissenschaftlerinnen und Wissenschaftler des Karlsruher Instituts für Technologie und der Universität Heidelberg interdisziplinär an innovativen Technologien und Materialien für digitale skalierbare additive Fertigungsverfahren, um den 3D-Druck präziser, schneller und leistungsfähiger zu machen. Ziel ist es, die 3D-Fertigung und Materialverarbeitung vom Molekül bis zur Makrostruktur vollständig zu digitalisieren. Zusätzlich zur Förderung als Exzellenzcluster innerhalb der Exzellenzstrategie des Bundes und der Länder wird 3DMM2O durch die Carl-Zeiss-Stiftung gefördert.

Weitere Informationen: www.3dmm2o.de

Originalpublikation:

Marc Hippler, Kai Weißenbruch, Kai Richler, Enrico D. Lemma, Masaki Nakahata, Benjamin Richter, Christopher Barner-Kowollik, Yoshinori Takashima, Akira Harada, Eva Blasco, Martin Wegener, Motomu Tanaka, Martin Bastmeyer: Mechanical Stimulation of Single Cells by Reversible Host-Guest Interactions in 3D Micro-Scaffolds, Science Advances, 2020, DOI: 10.1126/sciadv.abc2648.

Weitere Materialien:

Publikation in Science Advances: https://advances.sciencemag.org/content/6/39/eabc2648

 

Die 1386 gegründete Ruperto Carola ist eine international ausgerichtete Forschungsuniversität, deren Fächerspektrum die Geistes-, Sozial- und Rechtswissenschaften sowie die Natur- und Lebenswissenschaften einschließlich der Medizin umfasst. Ihre Erfolge in den Exzellenzwettbewerben – sie gehört zur Gruppe der deutschen Exzellenzuniversitäten – ebenso wie in internationalen Rankings belegen ihre führende Rolle in der Wissenschaftslandschaft. Es ist das Selbstverständnis der Universität Heidelberg, herausragende Einzeldisziplinen weiterzuentwickeln, die fächerübergreifende Zusammenarbeit zu stärken und ihre Forschungsergebnisse in die Gesellschaft zu tragen. Den rund 30 000 Studierenden bietet sie mit einem forschungsorientierten Studium in mehr als 180 Studiengängen eine nahezu einzigartige Vielfalt an Fächerkombinationen und individuellen Qualifikationswegen.

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 10 000 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 22 800 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.

ffr, 24.09.2020
Kontakt:

 

Monika Landgraf
Chief Communication Officer
Leiterin Gesamtkommunikation
Pressesprecherin
Tel: +49 721 608-41150
Fax: +49 721 608-43658
presse does-not-exist.kit edu

Kontakt für diese Presseinformation:

Dr. Felix Mescoli
Pressereferent
Tel.: +49 721 608 41171
felix mescoli does-not-exist.kit edu
Das Foto kann in der höchsten uns vorliegenden Qualität angefordert werden unter:
presse does-not-exist.kit edu oder +49 721 608-41105.

Die Presseinformation steht auch als PDF-Datei zur Verfügung.